Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Ekstremno naključni kvantilni gozdovi
ID
BALON, MATJAŽ
(
Author
),
ID
Kononenko, Igor
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(585,78 KB)
MD5: A597F1A2365AAAFDDD627D8A6FB0FC07
PID:
20.500.12556/rul/12d6c414-c796-404d-83f7-fdfa55cea342
Image galllery
Abstract
Ekstremno naključni kvantilni gozdovi so ansambelska metoda, ki z vnašanjem dodatne naključnosti in kvantilov razširja običajne naključne gozdove. V tem delu smo preverili njeno napovedno točnost z različnimi merami uspešnosti ter hitrost izvajanja. Analizirali smo tudi vplive različnih parametrov in velikosti učne množice na uspešnost delovanja in čas potreben pri izvajanju. Metodo smo primerjali z različnimi merami uspešnosti in časi delovanja še z dvema metodama, ki za napovedovanje uporabljata kvantile in s tremi metodami, ki dajejo napovedne intervale. Ekstremno naključni kvantilni gozdovi so se izkazali kot zelo konkurenčni tako v točnosti napovedovanja po različnih merah kot tudi v hitrosti izvajanja.
Language:
Slovenian
Keywords:
strojno ucenje
,
kvantili
,
nakljucni gozdovi
,
regresija
Work type:
Undergraduate thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2016
PID:
20.500.12556/RUL-82724
Publication date in RUL:
19.05.2016
Views:
1676
Downloads:
296
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Extremely randomized quantile forests
Abstract:
Extremely randomized quantile forests are an ensemble method which extends ordinary random forests with additional randomness and quantiles. In this work we checked its prediction accuracy with different success measures and execution speed. We also analyzed influences of various parameters and size of learning dataset on prediction performance and time needed for execution. We compared method with different success measures and execution time also with two methods that use quantiles for prediction and three methods that give prediction intervals. Extremely randomized quantile forests have been proved as competitive in terms of prediction strength with different measures and also in speed of execution.
Keywords:
machine learning
,
quantiles
,
random forest
,
regression
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back