izpis_h1_title_alt

Ekstremno naključni kvantilni gozdovi
ID BALON, MATJAŽ (Author), ID Kononenko, Igor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (585,78 KB)
MD5: A597F1A2365AAAFDDD627D8A6FB0FC07
PID: 20.500.12556/rul/12d6c414-c796-404d-83f7-fdfa55cea342

Abstract
Ekstremno naključni kvantilni gozdovi so ansambelska metoda, ki z vnašanjem dodatne naključnosti in kvantilov razširja običajne naključne gozdove. V tem delu smo preverili njeno napovedno točnost z različnimi merami uspešnosti ter hitrost izvajanja. Analizirali smo tudi vplive različnih parametrov in velikosti učne množice na uspešnost delovanja in čas potreben pri izvajanju. Metodo smo primerjali z različnimi merami uspešnosti in časi delovanja še z dvema metodama, ki za napovedovanje uporabljata kvantile in s tremi metodami, ki dajejo napovedne intervale. Ekstremno naključni kvantilni gozdovi so se izkazali kot zelo konkurenčni tako v točnosti napovedovanja po različnih merah kot tudi v hitrosti izvajanja.

Language:Slovenian
Keywords:strojno ucenje, kvantili, nakljucni gozdovi, regresija
Work type:Undergraduate thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-82724 This link opens in a new window
Publication date in RUL:19.05.2016
Views:1676
Downloads:296
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Extremely randomized quantile forests
Abstract:
Extremely randomized quantile forests are an ensemble method which extends ordinary random forests with additional randomness and quantiles. In this work we checked its prediction accuracy with different success measures and execution speed. We also analyzed influences of various parameters and size of learning dataset on prediction performance and time needed for execution. We compared method with different success measures and execution time also with two methods that use quantiles for prediction and three methods that give prediction intervals. Extremely randomized quantile forests have been proved as competitive in terms of prediction strength with different measures and also in speed of execution.

Keywords:machine learning, quantiles, random forest, regression

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back