izpis_h1_title_alt

Detekcija oddaljenih ovir z metodami računalniškega vida na robotskem plovilu
ID ČERNE, ALEŠ (Author), ID Perš, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,61 MB)
MD5: 100CDA09AE425294B65C2D62E47E7241
PID: 20.500.12556/rul/091c0cf4-6344-4afe-9235-b3d6790279da

Abstract
Delo predstavlja pristop k razvoju metode, s katero bo brezpilotno plovilo detektiralo ovire, ki so zunaj dosega stereo para kamer. Algoritem temelji na geometriji dveh pogledov s konceptom strukture iz gibanja. Poleg kamer upošteva tudi izhode ostalih senzorjev na robotu, ki se uporabljajo za določanje lege kamere. Predlagan pristop se opira na iskanje primernih parov v podatkovnem zalogovniku, ki hrani pretekle podatke zajetih slik. Prostor iskanja parov slik zmanjša z uporabo rojenja k-povprečij in drugih geometrijskih lastnosti lege kamer. Izhod algoritma je naraščajoči oblak točk, ki je na voljo metodam detekcije ovir in planiranja poti. Opravljeni so bili eksperimenti, s katerimi sta se ocenila ponovljivost detektorjev in vpliv negotovosti detekcij na rekonstrukcijo oblakov točk.

Language:Slovenian
Keywords:računalniški vid, struktura iz gibanja, 8-točkovni algoritem, SIFT, SURF, ORB, prostorska rekonstrukcija točk, oblak točk, brezpilotno plovilo
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2016
PID:20.500.12556/RUL-81574 This link opens in a new window
Publication date in RUL:14.04.2016
Views:1873
Downloads:642
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Detection of Distant Obstacles Using Computer Vision on a Unmanned Surface Vehicle
Abstract:
This thesis proposes an approach to a method, used by an Unmanned Surface Vehicle (USV) to detect obstacles, that are outside the range of onboard stereoscopic camera pair. Algorithm is based on a concept of Structure from motion using two-view geometry. It also utilizes data from other available sensors, such that are used to assess the camera pose. The proposed approach relies on finding suitable pairs in the data buffer, that contains various data of previously captured images. Search of image pairs is reduced by implementing k-means clustering with respect to other geometric constraints on camera poses. Algorithm is building a growing point cloud, which is available to obstacle detection and path planning procedures. We have conducted experiments, which evaluate the detector repeatability and determine the effect of detection uncertainty on point cloud reconstruction.

Keywords:Computer vision, Structure from motion, 8-point algorithm, SIFT, SURF, ORB, 3D point reconstruction, Point cloud, Unmanned Surface Vehicle

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back