izpis_h1_title_alt

Genetic approach to strategic games : graduate thesis
ID Kristl, Črt (Author), ID Fijavž, Gašper (Mentor) More about this mentor... This link opens in a new window, ID Brodnik, Andrej (Comentor)

.pdfPDF - Presentation file, Download (4,19 MB)
MD5: 9D657A4402A9CAE4357E8471F64D1D96
PID: 20.500.12556/rul/8e73708c-e9fc-4ae1-8c21-f83211cc9ae9

Abstract
In this thesis we develop and implement a genetic algorithm to optimize a set of talents, equipment and sub-attributes of characters in the game Warcraft III and its modification The Kingdom of Kaliron. Finding the optimal set where a character performs the best in fights against enemies is a combinatorial problem for which we use a genetic algorithm to solve. To be able to evaluate a character, we implemented a simulation that required deep knowledge of game mechanics and programming principles of Warcraft III. We also used reverse engineering as a tool. We ensured convergence of a genetic algorithm with the use of population islands, which are disjoint subpopulations with weak mutual interactions, and with careful choosing of genetic algorithm parameters. We also implemented genetic algorithm memory, which helps create better initial individuals when creating new populations. Finally, we used parallelization to reduce the running time of the algorithm.

Language:English
Keywords:genetic algorithm, computer games, optimization, parallelization, simulation
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Publisher:[Č. Kristl]
Year:2016
Number of pages:48 str.
PID:20.500.12556/RUL-80202 This link opens in a new window
COBISS.SI-ID:1536802243 This link opens in a new window
Publication date in RUL:11.02.2016
Views:2528
Downloads:344
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Licences

License:CC BY-SA 4.0, Creative Commons Attribution-ShareAlike 4.0 International
Link:http://creativecommons.org/licenses/by-sa/4.0/
Description:This Creative Commons license is very similar to the regular Attribution license, but requires the release of all derivative works under this same license.

Secondary language

Language:Slovenian
Title:Genetski pristop k strateškim igram : diplomsko delo
Abstract:
V delu razvijemo in implementiramo genetski algoritem s katerim optimiziramo nabor znanj, opreme in lastnosti akcijskih junakov v strateški igri Warcraft III, oziroma njeni različici The Kingdom of Kaliron. Izbiro optimalnega nabora, takega pri katerem je akcijski junak kar se da uspešen v bojevanju z nasprotniki, zapišemo kot problem kombinatorične optimizacije, za njegovo reševanje pa uporabimo pristop z genetskim algoritmom. Za oceno sposobnosti junaka smo implementirali simulacijo, za katero smo potrebovali natančno poznavanje mehaničnih in programskih principov igre Warcraft III. Med drugim smo uporabljali metode vzvratnega inženirstva. Konvergenco genetskega algoritma smo zagotovili z uporabo otokov, ločenih podpopulacij s šibko medsebojno interakcijo, in s pazljivo izbiro parametrov genetskega algoritma. Poleg tega smo genetskemu algoritmu dodali spomin, ki pri ustvarjanju novih populacij pripomore k boljšem začetnem stanju osebkov. Ustrezno časovno učinkovitost pa smo pridelali s paralelizacijo metode.

Keywords:genetski algoritem, računalniške igre, optimizacija, paralelizacija, simulacija

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back