izpis_h1_title_alt

Računanje realnih ničel funkcij z uporabo Čebiševih polinomov
ID OVEN, BLAŽ (Author), ID Krajnc, Marjetka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,32 MB)
MD5: 2D58DCE7386ED5EBE98EC503E457C7F7
PID: 20.500.12556/rul/cbb27ed1-27e2-4115-aa5a-3315c265b0b2

Abstract
V diplomskem delu bomo predstavili Čebiševe polinome prve in druge vrste, njihove lastnosti ter Čebiševo vrsto. Uporabili bomo Čebiševe polinome prve vrste za iskanje ničel gladke funkcije f na danem intervalu. Najprej bomo funkcijo aproksimirali z Čebiševimi polinomi in nato nad končno Čebiševo vrsto uporabili polinomske iskalnike ničel. V nadaljevanju pa bomo predstavili, kako najti ničle polinomske funkcije na nekem intervalu, ki ga bomo pri nekaterih algoritmih razdelili na podintervale z namenom natančnejšega in tudi hitrejšega iskanja ničel. Predstavljenih bo nekaj algoritmov in njihova uporaba, pa tudi njihove zahtevnosti, slabosti in omejitve. V okviru dela smo algoritme tudi sprogramirali v programu Matlab. Njihova praktična uporaba bo predstavljena na primerih.

Language:Slovenian
Keywords:ničle, Čebiševi polinomi, Čebiševa vrsta, pretvorba v potence, podvajanje stopnje
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-80191 This link opens in a new window
COBISS.SI-ID:1536776899 This link opens in a new window
Publication date in RUL:10.02.2016
Views:1680
Downloads:701
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Calculating real roots using Chebyshev polynomials
Abstract:
In this work, Chebyshev polynomials of the first and the second kind, their properties and the Chebyshev series will be examined. We will use Chebyshev polynomials of the first kind to find roots of the smooth function f on the given interval. At first the function will be approximated and then the polynomial root-finders on the truncated Chebyshev series will be used. In the next chapter we will study how to find roots of a polynomial function on the interval which we will, with some algorithms, divide on subintervals with the purpose of more accurate and faster finding of the roots. Different algorithms and their use, their complexity and their strengths and weaknesses will be presented. During this work we have also programmed these algorithms in Matlab. We will show their practical application on some examples.

Keywords:roots, Chebyshev polynomials, Chebyshev series, Convert to powers, Degree doubling

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back