izpis_h1_title_alt

Rešljive grupe : diplomsko delo
ID Kos, Blaž (Author), ID Šparl, Primož (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/id/eprint/3035 This link opens in a new window

Abstract
V diplomskem delu obravnavamo pojem rešljive grupe. Le-te se izkažejo za zelo pomemben koncept znotraj teorije grup. Pred samo vpeljavo pojma rešljive grupe najprej ponovimo osnovne definicije in rezultate teorije grup, ki so potrebni za razumevanje diplomskega dela. Nato vpeljemo pojem (pod)normalne vrste in ga ilustriramo na primerih. Prav tako definiramo pojma kompozicijske in komutatorske vrste ter ju ilustriramo na primerih. Nazadnje vpeljemo še pojem rešljive grupe. Poiščemo kriterij, kdaj je dana končna grupa rešljiva. Podamo primere rešljivih in nerešljivih grup in predstavimo še nekaj rezultatov, povezanih z rešljivimi grupami.

Language:Slovenian
Keywords:(pod)normalna vrsta, kompozicijska vrsta, komutatorska vrsta
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Publisher:[B. Kos]
Year:2015
Number of pages:25 str.
PID:20.500.12556/RUL-72613 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:10697033 This link opens in a new window
Publication date in RUL:29.09.2015
Views:2260
Downloads:339
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Solvable groups
Abstract:
In this BSc thesis we consider the concept of solvable groups. It turns out that this concept is one of the most important ones in group theory, since these groups in a sense correspond to groups that can be constructed from cyclic groups of prime order. Before introducing the concept of solvable groups we make a short review of some notions and results in group theory. We then define the concept of (sub)normal series and illustrate it with a few examples. We also define the concepts of composition series and commutator series. We then finally introduce the concept of solvable groups. We present a criterion of when a finite group is solvable. We give examples of solvable and nonsolvable groups and present some other results related to the concept of solvable groups.

Keywords:mathematics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back