izpis_h1_title_alt

Ocenjevanje stanja napolnjenosti baterije inteligentnega avtodoma
ID SENOŽETNIK, MATEJ (Author), ID Demšar, Janez (Mentor) More about this mentor... This link opens in a new window, ID Mladenić, Dunja (Comentor)

.pdfPDF - Presentation file, Download (1,06 MB)
MD5: BFD99AB12506A773C68C3B017172FE8C
PID: 20.500.12556/rul/5b9b214c-18bd-45a3-b35e-f26c0e9697be

Abstract
Namen diplomskega dela je razviti in uporabiti metodo, ki bo uspešno ocenjevala stanje napolnjenosti Li-ion baterije v inteligentnem avtodomu. Stanje napolnjenosti je pomemben podatek in zato mora biti čim bolj natančno ocenjen. Ne moremo ga izmeriti, zato ga je potrebno oceniti iz meritev in ga lahko razberemo iz podatkov napetosti, toka, temperature in drugih razpoložljivih podatkov. V teoretičnem delu predstavimo tehnologijo Li-Ionskih baterij. Razvoj in uporaba metod za ocenjevanje stanja napolnjenosti je razdeljena v štiri skupine, in sicer neposredne metode, metode integriranja, adaptivne sisteme in hibridne metode. Opisali smo ključne značilnosti vsake metode. V praktičnem delu smo najprej pridobili podatke o toku, napetosti in temperaturi med normalnim obratovanjem baterije. Podatke smo zbrali za več ciklov polnjenja in praznjenja. Pri neposredni metodi smo razvili in testirali napetostno meritev in model baterije. Pri metodi integriranja smo uporabili štetje naboja. Pri adaptivnih sistemih smo uporabili linearno regresijo in metodo podpornih vektorjev. Pri hibridnih metodah smo uporabili kombinacijo adaptivnih sistemov in neposrednih metod ter izbrali linearno regresijo z napetostno meritvijo ter metodo podpornih vektorjev v kombinaciji z napetostno meritvijo. Slednja daje najboljše rezultate, zato smo jo dejansko implementirali v avtodomu.

Language:Slovenian
Keywords:ocena stanja napolnjenosti, adaptivni sistemi, strojno učenje
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2015
PID:20.500.12556/RUL-72427 This link opens in a new window
Publication date in RUL:17.09.2015
Views:2493
Downloads:649
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Assessment of the state of charge of the battery of an intelligent mobile home
Abstract:
The aim of this thesis is to develop an accurate method for estimating state of charge (SOC) estimation of Li-Ion batteries and use it in the real-world setting in an intelligent mobile home. The state of charge can not be measured directly. While it depends on the past electrical current that flew in/out of the battery and the battery temperature, a reasonable estimation can be made based on the current values of the battery voltage, temperature and incoming/outcoming electrical current. In the theoretical section, we present various battery technologies, and methods that can be used to predict the SOC information. The methods are divided into four categories: direct methods, integration methods, hybrid methods and adaptive systems. We describe the basic characteristics of each groups and of some methods. In the practical section, we first acquired the historical measurements of the battery current, voltage and temperature under regular operating conditions. We use the data to compare suitable representatives of each groups of methods. We found out that the best performing method was a combination of the linear regression with voltage measurement and support vector machine, so this method was eventually implemented in the mobile home.

Keywords:machine learning, estimation of the state of charge, adaptive systems

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back