izpis_h1_title_alt

Globoko nevronsko omrežje za avtentikacijo preko obrazne biometrije
ID Grm, Klemen (Author), ID Štruc, Vitomir (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,67 MB)
MD5: 2DCE29B027699247F920C2FBDA0EEEED
PID: 20.500.12556/rul/b6bd2fd6-807d-4f3f-86aa-642f5dc6b7ef

Abstract
V pričujočem delu je predstavljen in ovrednoten model PISI (Pose-Invariant Similarity Index) za avtentikacijo ljudi preko obrazne biometrije. Predstavlja poizkus robustne rešitve problema določitve, če dve dani sliki obrazov predstavljata isto osebo, neobčutljive na pozo obraza na sliki. Razviti model temelji na globokih konvolucijskih nevronskih omrežjih. Naučen model je ovrednoten na standardnih zbirkah obraznih slik FERET in IJB-A. Eksperimentalni rezultati kažejo, da model PISI na teh dveh podatkovnih bazah dosega boljše rezultate od modelov PCA in LDA z Gaborjevimi filtri, ki sta bila uporabljena za primerjavo. Poglavje 1 poda uvod v delo. Poglavje 2 poda zgodovinski pregled področij globokih nevronskih omrežij in računalniške obdelave obrazne biometrije. Poglavje 3 predstavlja pregled teoretičnega ozadja strukture in učenja globokih nevronskih omrežij. Poglavje 4 poda strukturo modela PISI in postopke učenja, uporabljene za določitev njegovih prostih parametrov. Poglavje 5 predstavi podatkovne baze in metode, uporabljene za vrednotenje modela, poglavje 6 pa rezultate vrednotenja. Zaključki dela so podani v poglavju 7.

Language:Slovenian
Keywords:globoko učenje, biometrija, računalniški vid
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2015
PID:20.500.12556/RUL-72300 This link opens in a new window
Publication date in RUL:11.09.2015
Views:1866
Downloads:627
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:A deep neural network for face authentication
Abstract:
The thesis presents the PISI model for face recognition. It represents an attempt at solving the problem of determining whether two given facial images represent the same subject, insensitive to the pose of the subject. The model is based on deep convolutional neural networks. The fully-trained model is evaluated using the standard facial image data sets FERET and IJB-A using performance curves and quantitative performance metrics. The PISI model is found to outperform the PCA and LDA methods applied on Gabor features, on both data sets. Chapter 1 provides an introduction to the thesis. Chapter 2 presents a historical overview of the fields of deep learning and facial biometry. Chapter 3 contains an explanation of the theory of the structure and learning process of deep neural networks. Chapter 4 describes the PISI model and the learning methods used to set its parameters. Chapter 5 presents the databases used to train and validate the model and methods used to evaluate the results, and chapter 6 presents the results of the evaluation. Chapter 7 presents the

Keywords:deep learning, biometrics, computer vision

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back