izpis_h1_title_alt

Logistična diferencialna enačba : diplomsko delo
ID Šubic, Sabina (Author), ID Slapar, Marko (Mentor) More about this mentor... This link opens in a new window, ID Starčič, Tadej (Comentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/2973/ This link opens in a new window

Abstract
V diplomskem delu bomo obravnavali logistično diferencialno enačbo, ki je uporabna pri obravnavi modelov rasti populacij določenih vrst in na številnih drugih področjih, kot bo predstavljeno preko primerov. Začeli bomo z eksponentnim modelom rasti in pokazali pomanjkljivosti le-tega pri rasti populacij zaradi neupoštevanja omejitvenih dejavnikov. Tako bomo postopoma prišli do uvedbe logistične diferencialne enačbe, ki upošteva omejitvene dejavnike. V zadnjem delu bomo vpeljali še logistično diferencialno enačbo s kritičnim pragom, ki upošteva še minimalno velikost populacije, da se le-ta lahko uspešno širi.

Language:Slovenian
Keywords:eksponentna rast, logistična rast, logistična diferencialna enačba s kritičnim pragom
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Publisher:[S. Šubic]
Year:2015
Number of pages:28 str.
PID:20.500.12556/RUL-72167 This link opens in a new window
UDC:512.625.55(043.2)
COBISS.SI-ID:10673225 This link opens in a new window
Publication date in RUL:08.09.2015
Views:1909
Downloads:377
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Logistic differential equation
Abstract:
In this diploma thesis we will discuss the logistic differential equation, which is useful when dealing with models of growth of populations of certain species, as well as in many other areas, which will be presented through examples. We will start with the exponential growth model and show its weakness due to disregarding the limiting factors. This is how we will gradually come to the introduction of the logistic differential equation, which takes into account the limiting factors. In the last section we will introduce a logistic differential equation with a critical threshold, which takes into account the minimum population size in order to spread successfully.

Keywords:model of growth

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back