izpis_h1_title_alt

Izboljšan robusten model z regijami za vizualno sledenje objektov
ID Lukežič, Alan (Author), ID Kristan, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,26 MB)
MD5: C94D11991CF6E5BC2ED4BD6C7557DA82
PID: 20.500.12556/rul/063ffeb8-08e6-4be3-a86f-ef684c903164

Abstract
Magistrska naloga obravnava kratkotrajno vizualno sledenje objektov s pomočjo deformabilnih modelov z regijami. Ti modeli kažejo izjemen potencial pri naslavljanju nerigidnih deformacij in delnega zakrivanja objektov, vendar se pogosto odrežejo slabše od holističnih pristopov, ki objekt modelirajo z enim samim globalnim modelom izgleda. Običajno so vzrok za slabše delovanje veliko število prostih parametrov, ki jih sledilnik ocenjuje, in poenostavitve v topologiji konstelacije, ki so potrebne za delovanje v realnem času. Pogosto so tudi geometrijske in vizualne omejitve kombinirane neprincipelno. Za razliko od opisanih pristopov v nalogi predstavljamo generativni model, ki vizualne in geometrijske omejitve združuje v sistem vzmeti s konveksno energijsko funkcijo. Predlagamo tudi optimizacijsko metodo, ki učinkovito minimizira energijo polno povezanega sistema vzmeti. Predlagano metodo primerjamo z obstoječim optimizacijskim pristopom, ki ga naša metoda presega tako v smislu hitrosti kot tudi numerične stabilnosti. V nalogi predlagamo sledilnik z deli, ki kombinira dve stopnji podrobnosti vizualnega modela, in sicer grobo-in srednjenivojsko predstavitev tarče. Za lokalizacijo regij na srednje-nivojski predstavitvi uporabimo predlagano rešitev hitre optimizacije sistema vzmeti. Razvit sledilnik rigorozno primerjamo s trenutno najboljšimi metodami sledenja znotraj tekmovanja VOT2014, ter analiziramo sestavne dele sledilnika, saj primerjamo vpliv posameznih komponent na samo delovanje. Rezultati kažejo, da je predlagan sledilnik boljši tako od testiranih holističnih sledilnikov, kot tudi od najboljših objavljenih sledilnikov na VOT2014, ki temeljijo na regijah. Poleg tega sledilnik deluje v realnem času.

Language:English
Keywords:računalniški vid, vizualno sledenje objektom, deformabilni modeli, korelacijski filtri, sistemi vzmeti
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2015
PID:20.500.12556/RUL-72112 This link opens in a new window
Publication date in RUL:28.08.2015
Views:1930
Downloads:875
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Improved robust part-based model for visual object tracking
Abstract:
This thesis addresses short-term visual object tracking by deformable parts models (DPM). The DPMs show a great potential in addressing non-rigid object deformations and self-occlusions, but according to recent benchmarks, they often lag behind the holistic approaches, which model an object with a single appearance model. The reason is that potentially large number of parameters in constellation needs to be estimated for target localization and simplifications of the constellation topology are often assumed to make the inference tractable. Furthermore, the visual model and geometric constraints are usually combined in an ad-hoc fashion. In contrast to related approaches, we present a generative model that jointly treats contributions of the visual and of the geometric model as a single physics-based spring system with a convex energy function. An efficient optimization method is proposed for this dual form that allows MAP inference of a fully-connected constellation model. The proposed optimization method is compared to the existing optimization approach and outperforms it in terms of stability and efficiency. In the thesis we propose a part-based tracker that combines two visual representations of the target, i.e., coarse and mid-level representation. The proposed optimization method is used for target localization on the mid-level representation. The resulting tracker is rigorously analyzed on a highly challenging VOT2014 benchmark, it outperforms the related part-based and holistic trackers including the winner of the VOT2014 challenge and runs in real-time. The design of the proposed tracker is analyzed by an analysis of each component of the tracker.

Keywords:computer vision, visual object tracking, deformable-part models, correlation filters, spring systems

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back