izpis_h1_title_alt

Napovedovanje mesta na RNA v interakciji s proteinom
ID Huč, Aleks (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,88 MB)
MD5: DC51423987A169D8880829F0938D7064
PID: 20.500.12556/rul/64bfa091-43be-4f19-b0d4-9e2a4d0e5d16

Abstract
V magistrskem delu smo razvili modele za napovedovanje mest na RNA v interakciji s proteini, pri čemer smo uporabili metodo skritih Markovih modelov. Določili smo reprezentativne atribute in motive, na podlagi katerih smo nato zgradili modele za vsak posamezen eksperiment. Ugotovili smo, da različni proteini uporabljajo veliko skupnih atributov in motivov za prepoznavo mest interakcije z RNA. Modeli z dvema stanjema (prisotnost interakcije) boljše napovedujejo kot pa modeli s tremi stanji (prisotnost in intenziteta interakcije). Združevanje napovedi modelov posameznih eksperimentov ne izboljša zmogljivosti napovedovanja. Združeni modeli imajo dovolj dobro zmogljivost, da nam lahko služijo za sklepanje o relacijah med posameznimi proteini, in sicer njihovem sodelovanju, tekmovanju ali neodvisnosti. Skriti Markovi modeli predstavljajo primerno metodo za napovedovanje mest interakcij.

Language:Slovenian
Keywords:skriti Markov model, Markove verige, Viterbijev algoritem, algoritem naprej, algoritem nazaj, aposteriorno dekodiranje, transkripcija, RNA, protein, gen
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2015
PID:20.500.12556/RUL-72036 This link opens in a new window
Publication date in RUL:17.08.2015
Views:2051
Downloads:450
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Predicting protein-RNA interaction sites on RNA
Abstract:
The main goal of the master's thesis has been to develop prediction models for interactions between RNA and proteins. We have chosen hidden Markov models as our method for modelling and predicting interactions. From our initial data we have extracted representative features and motifs, which we used for building separate models for each experiment. Majority of proteins bind to the same or very similar features and motifs. We have compared the predictive accuracy of models build with two (presence of interaction) and three states (presence and intensity of interaction). Results show that models with two states perform better than models with three states. Merging predictions of multiple single experiment models in combined models, does not improve prediction accuracy. However, combined models perform with high accuracy, and can be used to determine the relations between proteins, such as competition, cooperation and independence with other proteins when interacting with RNA. We have presented hidden Markov models as viable method for predicting interactions between RNA and proteins.

Keywords:hidden Markov model, Markov chain, Viterbi algorithm, forward algorithm, backward algorithm, posterior decoding, transcription, RNA, protein, gene

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back