Details

Rak trebušne slinavke - preživetje v odvisnosti od uspešnosti terapije : diplomska naloga
ID Fijan, Olivia (Author), ID Osredkar, Joško (Mentor) More about this mentor... This link opens in a new window, ID Janša, Rado (Comentor)

URLURL - Presentation file, Visit http://www.ffa.uni-lj.si/fileadmin/datoteke/Knjiznica/diplome/2010/Fijan_Olivia_dipl_nal_2010.pdf This link opens in a new window

Language:Slovenian
Keywords:rak trebušne slinavke, tumorski označevalci, kemiluminiscenčna imunološka metoda, antigen 19-9, patologija, diagnostika, zdravljenje
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FFA - Faculty of Pharmacy
Place of publishing:Ljubljana
Publisher:[O. Fijan]
Year:2010
Number of pages:IX, 86 f.
PID:20.500.12556/RUL-71083 This link opens in a new window
UDC:616.4
COBISS.SI-ID:2892913 This link opens in a new window
Publication date in RUL:10.07.2015
Views:2885
Downloads:214
Metadata:XML DC-XML DC-RDF
:
FIJAN, Olivia, 2010, Rak trebušne slinavke - preživetje v odvisnosti od uspešnosti terapije : diplomska naloga [online]. Bachelor’s thesis. Ljubljana : O. Fijan. [Accessed 3 April 2025]. Retrieved from: http://www.ffa.uni-lj.si/fileadmin/datoteke/Knjiznica/diplome/2010/Fijan_Olivia_dipl_nal_2010.pdf
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Pancreatic cancer - survival dependending on successfulness of therapy

Similar documents

Similar works from RUL:
  1. Recognising people’s age from face images with convolutional neural networks
  2. Detekcija uhljev s konvolucijskimi nevronskimi mrežami
  3. Iris recognition using deep learning
  4. Automatic classification of buildings with deep learning
  5. Automatic image captioning using deep neural networks
Similar works from other Slovenian collections:
  1. Person age estimation based on digital images using convolutional neural networks
  2. Person activity recognition from image sequence using convolutional neural networks
  3. Food recognition from digital images using convolutional neural networks
  4. Recognition of human emotions on digital images using convolutional neural networks
  5. Time series classification based on convolutional neural networks

Back