izpis_h1_title_alt

Premagovanje ovire šibkega znanja pri geometrijskih dokazovalnih nalogah
ID Magajna, Zlatan (Author)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/2011/ This link opens in a new window

Abstract
Pri dokazovanju v šolski geometriji ne gre le za dokazovanje resničnosti trditve. Pri pouku matematike je bistvo dokazovanja prepričljiva razlaga, zakaj je neka trditev resnična. Učenci doživljajo dokazovanje kot zahtevno; zahteven se jim zdi že pojem dokaza. Dokazovanje trditev o ravninski geometriji vključuje več procesov, najizrazitejša pa sta vizualno opazovanje in deduktivno argumentiranje. Ta procesa sta prepletena, pri čemer pa šibko opazovanje pogosto ovira deduktivno argumentacijo. V članku preučujemo možnost premagovanja ovire učenčevega šibkega opazovanja z uporabo računalniško podprtega opazovanja z ustrezno programsko opremo. Predstavljamo izsledke dveh manjših raziskav. Obe pokažeta, da učenci ob uporabi računalniško podprtega opazovanja oblikujejo bistveno več deduktivnih sklepov kot sicer. Vendar pa niso vsi učenci ob uporabi računalniško podprtega opazovanja učinkoviti: nekatere zmede izčrpen nabor lastnosti, ki jih opazi računalniški program, in niso zmožni med lastnostmi izbrati tistih, ki so pomembne za nalogo.

Language:Unknown
Keywords:računalniško podprto opazovanje
Work type:Not categorized
Organization:PEF - Faculty of Education
Publisher:University of Ljubljana, Faculty of Education
Year:2013
Number of pages:99-116
Numbering:3
PID:20.500.12556/RUL-68385 This link opens in a new window
ISSN:1855-9719
Publication date in RUL:10.07.2015
Views:757
Downloads:204
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Unknown
Title:Overcoming obstacle of poor knowledge in proving geometry tasks
Abstract:
Proving in school geometry is not just about validating the truth of a claim. In the school setting, the main function of the proof is to convince someone that a claim is true by providing an explanation. Students consider proving to be difficult; in fact, they find the very concept of proof demanding. Proving a claim in planar geometry involves several processes, the most salient being visual observation and deductive argumentation. These two processes are interwoven, but often poor observation hinders deductive argumentation. In the present article, we consider the possibility of overcoming the obstacle of a student’s poor observation by making use of computer-aided observation with appropriate software. We present the results of two small-scale research projects, both of which indicate that students are able to work out considerably more deductions if computer-aided observation is used. Not all students use computer-aided observation effectively in proving tasks: some find an exhaustive computer-provided list of properties confusing and are not able to choose the properties that are relevant to the task.

Keywords:computer-aided observation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back