Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Razvoj pojma število pri predšolskem otroku
ID
Manfreda Kolar, Vida
(
Author
)
URL - Presentation file, Visit
http://www.biblos.si/lib/book/9789612531454
Image galllery
Abstract
Delo podrobneje osvetli obdobje otrokovega začetnega soočanja s svetom števil in računskih operacij.
Language:
Slovenian
Keywords:
otroška psihologija
,
kognitivni razvoj
,
štetje
,
elektronske knjige
Work type:
Not categorized
Organization:
PEF - Faculty of Education
Place of publishing:
V Ljubljani
Publisher:
Pedagoška fakulteta
Year:
2013
PID:
20.500.12556/RUL-51739
ISBN:
978-961-253-145-4
UDC:
159.922.7(0.034.2)
COBISS.SI-ID:
268154880
Publication date in RUL:
10.07.2015
Views:
5097
Downloads:
477
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MANFREDA KOLAR, Vida, 2013,
Razvoj pojma število pri predšolskem otroku
[online]. 2013. V Ljubljani : Pedagoška fakulteta. [Accessed 29 March 2025]. ISBN 978-961-253-145-4. Retrieved from: http://www.biblos.si/lib/book/9789612531454
Copy citation
Share:
Similar documents
Similar works from RUL:
Object tracking by segmentation and color depth image prediction
Segmentacija rok za obogateno resničnost
Determining scene illumination in augmented reality
Virtual hair makeover using computer vision tools
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Similar works from other Slovenian collections:
Recognition of tree features from photography using convolutional neural networks
Klasifikacija možganskih lezij z umetno nevronsko mrežo
Adversarial perturbation on neural network image recognition using an evolutionary algorithm
Comparison of modern convolutional neural networks for image segmentation
Food recognition from digital images using convolutional neural networks
Back