izpis_h1_title_alt

Sinteza večsenzorskih neporušnih preiskav gradbenih konstrukcijskih elementov z uporabo metod gručenja : doktorska disertacija
ID Cotič Smole, Patricia (Author), ID Jagličić, Zvonko (Mentor) More about this mentor... This link opens in a new window, ID Bosiljkov, Vlatko (Comentor)

.pdfPDF - Presentation file, Download (22,20 MB)
MD5: 931A3DB831380882C0C79B6334B5C415
PID: 20.500.12556/rul/90dc1ae2-4cda-48ee-8d78-c8084641522f

Abstract
V disertaciji predstavimo uporabo postopka za združevanje slik večsenzorskih neporušnih preiskav, ki temelji na metodah gručenja. Za združevanje na nivoju posamezne slikovne točke in z uporabo značilnic analiziramo algoritme trdega in mehkega gručenja. Sintezo georadarskih in termografskih podatkov opravimo na rezultatih preiskav betonskih preizkušancev z vgrajenimi anomalijami ter na rezultatih preiskav zidovja s prisotnimi razpokami in odstopanjem ometa zaradi delovanja strižne obremenitve. Na betonskih preizkušancih najboljše deluje algoritem gručenja GK, ker prepoznava razrede gručenja poljubne oblike in ne le sferične kot algoritma FCM in PFCM. V primerih s še posebno omejenim vedenjem o materialnih lastnostih in globini anomalij združevanje z uporabo metod gručenja deluje bolje kot metode nadzorovanega združevanja podatkov. Na večslojnih kamnitih zidovih lahko z uporabo georadarja in infrardeče termografije zaznamo morfologijo in teksturo zidov ter odstopanje ometa in nastanek razpok. Za izboljšano zaznavanje odstopanja ometa in razpok predlagamo združevanje podatkov na nivoju posamezne slikovne točke za segmentacijo slik. Z georadarsko, ultrazvočno in geoelekrično tomografijo opravimo na zidovju tudi raziskavo vpliva stopnje vlažnosti zidovja na občuljivost neporušnih metod. Metode gručenja uporabimo tudi za združevanje neporušnih podatkov navigacijskega večsenzorskega robotnega sistema. Poleg tega izvedemo tudi klasifikacijo spektroskopskih podatkov betonskih preizkušancev. V obeh primerih metode gručenja uporabimo za segmentacijo podatkov.

Language:Slovenian
Keywords:gradbeništvo, disertacije, neporušne preiskave, georadar, infrardeča termografija, ultrazvočna metoda, kompleksno-uporovna metoda, beton, zidovje, združevanje podatkov, združevanje slik, metode gručenja
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FGG - Faculty of Civil and Geodetic Engineering
Place of publishing:Ljubljana
Publisher:[P. Cotič]
Year:2014
Number of pages:XXX, 100 str., [53] str. pril.
PID:20.500.12556/RUL-32258 This link opens in a new window
UDC:551.509.313:624.012.82:624.012.4:(043.3)
COBISS.SI-ID:6614113 This link opens in a new window
Publication date in RUL:10.07.2015
Views:3897
Downloads:513
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The synthesis of multisensor non-destructive testing of civil engineering structural elements with the use of clustering methods
Abstract:
In the thesis, clustering-based image fusion of multi-sensor non-destructive (NDT) data is studied. Several hard and fuzzy clustering algorithms are analysed and implemented both at the pixel and feature level fusion. Image fusion of ground penetrating radar (GPR) and infrared thermography (IRT) data is applied on concrete specimens with inbuilt artificial defects, as well as on masonry specimens where defects such as plaster delamination and structural cracking were generated through a shear test. We show that on concrete, the GK clustering algorithm exhibits the best performance since it is not limited to the detection of spherical clusters as are the FCM and PFCM algorithms. We also prove that clustering-based fusion outperforms supervised fusion, especially in situations with very limited knowledge about the material properties and depths of the defects. Complementary use of GPR and IRT on multi-leaf masonry walls enabled the detection of the walls’ morphology, texture, as well as plaster delamination and structural cracking. For improved detection of the latter two, we propose using data fusion at the pixel level for data segmentation. In addition to defect detection, the effect of moisture is analysed on masonry using GPR, ultrasonic and complex resistivity tomographies. Within the thesis, clustering is also successfully applied in a case study where a multi-sensor NDT data set was automatically collected by a self-navigating mobile robot system. Besides, the classification of spectroscopic spatial data from concrete is taken under consideration. In both applications, clustering is used for unsupervised segmentation of data.

Keywords:civil engineering, thesis, non-destructive testing, ground penetrating radar, infrared thermography, ultrasonic, complex resistivity, concrete, masonry, data fusion, image fusion, clustering methods

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back