izpis_h1_title_alt

Klasifikacija Wi-Fi signalov in merjenje obiska po regijah
ID ŽUPEC, NEJC (Author), ID Ciglarič, Mojca (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (7,23 MB)
MD5: B801002173949B0468534D85F49E3A89
PID: 20.500.12556/rul/a8dfee44-3f77-4eea-bc24-b352032aad62

Abstract
Vse več je mobilnih naprav, ki oddajajo signale Wi-Fi. Te lahko zaznamo z dostopnimi točkami, posledično pa lahko merimo število obiskovalcev v bližini dostopnih točk. Pogosto nas zanima število obiskovalcev samo za določen prostor oz. regijo. Zato smo v okviru magistrske naloge raziskali metode in produkte, s katerimi je možno določiti lokacijo izvora signala. Ker nas zanima le regija, smo problem določanja lokacije transformirali v problem klasifikacije signala Wi-Fi v regije. Po zgledu obstoječih metod za določanje lokacije (metoda najmočnejša dostopne točke, trilateracija in sistem RADAR), smo razvili tri nove metode. Da bi lahko te metode ovrednotili, smo na Fakulteti za računalništvo in informatiko postavili sistem za zajem signalov Wi-Fi in z njim dva meseca zajemali podatke. S pomočjo strojnega učenja smo razvili metodo, ki v 85,1 % pravilno napove regijo izvora signala Wi-Fi. V primeru, da so regije med seboj ločene s stenami, pa klasifikacijska natančnost znaša več kot 93 %.

Language:Slovenian
Keywords:Wi-Fi, klasifikacija, SVM, strojno učenje, RADAR, trilateracija, določanje lokacije
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2015
PID:20.500.12556/RUL-30861 This link opens in a new window
Publication date in RUL:07.07.2015
Views:1758
Downloads:368
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Wi-Fi signal classification and visitor counting by region
Abstract:
More and more mobile devices transmit Wi-Fi signals which can be detected by access points. Consequently the number of visitors near access points can be measured. Often we are interested in the number of visitors only for a certain region. Therefore, in the context of master's thesis, methods and products for indoor localization were studied. We transformed the localization problem into classification of Wi-Fi signals problem. Based on existing methods (nearest base station, trilateration and RADAR) we developed three new methods. In order to evaluate these methods the sytem for capturing Wi-Fi signals was set up at the Faculty of Computer and Information Science in Ljubljana. The data was being collected for two months. Based on machine learning algorithms we developed a new method, which correctly predicts the region in 85,1 % cases. If regions are separated by walls, the classification accuracy is more than 93 %.

Keywords:Wi-Fi, classification, SVM, machine learning, RADAR, trilateration, localization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back