izpis_h1_title_alt

Tridimenzionalne optične simulacije tankoplastnih silicijevih sončnih celic s kovinskimi nanodelci
ID VERDNIK, GREGOR (Author), ID Krč, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,94 MB)
MD5: BA73BDC0E08037923C2292099C1C45AA
PID: 20.500.12556/rul/c608a75b-3203-48b6-85d1-a9ff5c3bd5bf

Abstract
Fotovoltaika postaja vse bolj pomembno področje pridobivanja elektrike iz obnovljivih virov energije - sonca. Pomembno je, da se še vedno znižujejo stroški izdelave sončnih celic, ter izboljšujejo izkoristki pretvorbe. Eno od možnosti v smeri teh ciljev, predstavlja tankoplastna tehnologija sončnih celic. V okviru diplomske naloge smo se osredotočili na povečanje ujetja svetlobe v celicah na osnovi plazmonskega efekta, ki nastopi pri kovinskih nanodelcih. S pomočjo tridimenzionalnih optičnih simulacij smo raziskali efekte in pokazali izboljšave ujetja na primeru tankoplastne silicijeve sončne celice, na osnovi mikrokristalnega materiala. Kovinski nanodelci, zaradi plazmonskega efekta, svetlobo učinkovito sipajo tudi v velike kote, kar je izrednega pomena za ujetje svetlobe v celici. V simuliranih strukturah, z gladkimi in hrapavimi spoji, smo vstavili srebrne nanodelce na različne pozicije v sprednjo in zadnjo transparentno prevodno plast. Osredotočili smo se na simulacije sferičnih kovinskih nanodelcev na različnih pozicijah, nato pa smo za najboljši položaj nanodelcev, le tem spreminjali še premer ter razdaljo med središči nanodelcev. Vsi 3D modeli in simulacije so bili izdelani in simulirani v programskem okolju Comsol. Za vsak posamezen primer smo izračunali in podali kvantni izkoristek celice QE, gostoto kratkostičnega toka JSC in odbojnost svetlobe na vrhu celice Rtot. Ugotovili smo, da kovinski nanodelci v zadnjem TCO povečajo gostoto kratkostičnega toka, najboljše rezultate smo dobili za nanodelce blizu spoja med zadnjim TCO in dopirano n plastjo. Na tem položaju smo ugotovili, da se z večanjem premera srebrnih nanodelcev povečuje tudi gostota kratkostičnega toka celice, vendar le do določene velikosti nanodelcev. Vsi primeri pa pri velikih valovnih dolžinah svetlobe povzročijo povečanje kvantnega izkoristka QE. Na koncu smo prikazali še vpliv spreminjanja razdalj med središči nanodelcev, kjer smo ugotovili, da s krajšanjem razdalje, za izbran položaj nanodelcev, prav tako povečujemo gostoto kratkostičnega toka ter kvantni izkoristek za velike valovne dolžine svetlobe.

Language:Slovenian
Keywords:tankoplastne sončne celice, kovinski nanodelci, mikrokristalni hidrogenirani silicij, plazmonski efekt, ujetje svetlobe
Work type:Undergraduate thesis
Organization:FE - Faculty of Electrical Engineering
Year:2015
PID:20.500.12556/RUL-30710 This link opens in a new window
Publication date in RUL:23.04.2015
Views:1852
Downloads:392
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Three-dimensional optical simulations of thin-film silicon solar cells with metal nanoparticles
Abstract:
Photovoltaics is becoming an increasingly important field, focusing on obtaining electricity from renewable energy sources – the sun. It is important to further decrease solar cells manufacturing costs and to achieve higher conversion efficiencies. Better efficiency is also desired. Thin-film solar cells present a solution that could tackle previously mentioned requirements. The thesis deals with the improvement of light trapping in solar cells, increasing their efficiency. In particular, we investigated the role of metal nanoparticles introduced in the cell to scatter light. With the help of tree-dimensional optical simulations we have tackled effects and shown improvements in light trapping, for the case of thin-film silicon solar cell, based on microcrystalline material. Due to plasmonic effect, metal nanoparticles effectively dissipate light at high angles, which is vital for light trapping in a solar cell. In our simulations, we placed silver nanoparticles at different positions within the front and back transparent conductive layer. We focused our simulations on spherical metal nanoparticles. For the best position, we also tested various dimensions of metal nanoparticles and several distances between nanoparticles. All 3D models were designed and simulated by Comsol software. For each individual case we calculated solar cell’s quantum efficiency QE, short-circuit current density JSC and total light reflection Rtot measured on top of the solar cell. We concluded that metal nanoparticles in the back TCO cause an increase in short-circuit current density even for cells with textured interfaces. Best results were obtained when nanoparticles were positioned close to the doped n layer. Here, we noticed that increasing the diameter of metal nanoparticles causes an increase of short-circuit current density, but only to a certain point. Moreover, we noticed that for longer wavelengths, all simulations brought an increase in solar cell’s quantum efficiency QE. Lastly, we reviewed the influence of different spacing between metal nanoparticles, on QE, JSC and Rtot. Both, short-circuit current density and quantum efficiency (especially for long wavelengths), show an increase in value when nanoparticles are moved closer together.

Keywords:thin-film solar cells, metal nanoparticles, microcrystal hydrogenated silicon, plasmonic effect, light trapping

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back