izpis_h1_title_alt

Lehmerjev algoritem za računanje največjega skupnega delitelja
ID KOLAR, MIRJAM (Author), ID Jurišić, Aleksandar (Mentor) More about this mentor... This link opens in a new window, ID Drnovšek, Roman (Comentor)

.pdfPDF - Presentation file, Download (587,67 KB)
MD5: 2E76E35D2ACC9646D982B77686599D05
PID: 20.500.12556/rul/b0d54a63-4556-4f0a-9811-17bb67653d32

Abstract
V nalogi si na kratko ogledamo pravila v zvezi z največjim skupnim deliteljem ter najmanjšim skupnim večkratnikom dveh celih števil in opišemo Evklidov algoritem. Ogledamo si povezavo med Evklidovim algoritmom in verižnimi ulomki, Wirsingovo metodo za določanje porazdelitvene funkcije in kako je Knuth z uporabo te funkcije izračunal porazdelitev delnih kvocientov v Evklidovem algoritmu. Iz tega sledi še opis ideje Lehmerjevega algoritma, v čem se razlikuje od Evklidovega algoritma ter kako z njim poiščemo največji skupni delitelj dveh velikih števil in multiplikativni inverz po modulu n za naravno število n. Algoritma ter njuni razširitvi tudi implementiramo ter primerjamo, kdaj in za koliko je kateri od njiju hitrejši. Na koncu še na naključno izbranih številih preverimo, kakšni so kvocienti v Evklidovem algoritmu v praksi.

Language:Slovenian
Keywords:Lehmerjev algoritem, Evklidov algoritem, verižni ulomki, porazdelitvene funkcije, Wirsingova metoda za določanje porazdelitvene funkcije, kvocienti v Evklidovem algoritmu.
Work type:Undergraduate thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2015
PID:20.500.12556/RUL-30541 This link opens in a new window
COBISS.SI-ID:1536211651 This link opens in a new window
Publication date in RUL:30.01.2015
Views:1613
Downloads:440
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Lehmer's GCD algorithm
Abstract:
In this thesis we briefly look at the rules related to the greatest common divisor and the lowest common multiple of two integers and we describe the Euclidean algorithm. We study connections between Euclidean algorithm and continued fractions, Wirsing's method for determining the distribution function and how Knuth calculated the distribution of partial quotients in Euclidean algorithm using this method. Next Lehmer's algorithm is described and how it improves Euclidean algorithm, greatest common divisor and the multiplicative inverse mod n for a natural number n. We implement both Euclidean algorithm and Lehmer's algorithm in order to compare their speed. We also confirm the calculated distributions of partial quotients in Euclidean algorithm through an experiment.

Keywords:Lehmer's algorithm, Euclidean algorithm, continued fractions, distribution function, Wirsing's method for determining the distribution function, quotients in Euclidean algorithm.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back