izpis_h1_title_alt

Metoda za dolgoročno vizualno sledenje z značilnimi točkami : diplomsko delo
ID STRGAR, TINA (Author), ID Kristan, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,62 MB)
MD5: 492575749B7F5141E546FC18FC9C0292
PID: 20.500.12556/rul/af4d5f17-ec37-47a5-a481-2622c7a64ced

Abstract
V nalogi naslovimo problem dolgoročnega vizualnega sledenja. Izziv predstavljajo dinamično učenje videza tarče, zaznavanje odsotnosti tarče in njeno ponovno detektiranje. Predlagamo sledilnik, ki vizualni model sledene tarče gradi na podlagi lokalnih značilnic in afine preslikave. Dolgoročno sledenje je izvedeno z detekcijo, kratkoročno pa tudi s pomočjo optičnega toka. Pri prileganju preslikave sledilnik uporablja gnezdenje metod: najprej oceni gručo točk, ki verjetno pripadajo tarči, nato pa robustno oceni afino deformacijo. Značilnice za dodajanje modelu so izbrane na podlagi globalne predloge oblike, hkrati pa le-te prispevajo k njenemu posodabljanju, kar tvori povratno zanko. Sledilnik smo testirali na dveh skupinah sekvenc. Prva je namenjena primerjavi dolgoročnih, druga pa kratkoročnih sledilnikov. Rezultate primerjamo s trenutno najnaprednejšimi metodami na področju. Sledilnik se jim v uspešnosti približa, večjo pozornost pa bi bilo potrebno nameniti problemu ponovne detekcije.

Language:Slovenian
Keywords:računalniški vid, dolgoročno vizualno sledenje, dinamično učenje, posplošena Houghova transformacija, afina preslikava, računalništvo, računalništvo in informatika, univerzitetni študij, diplomske naloge
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Publisher:[T. Strgar]
Year:2014
Number of pages:52 str.
PID:20.500.12556/RUL-29560 This link opens in a new window
COBISS.SI-ID:1536123075 This link opens in a new window
Publication date in RUL:23.09.2014
Views:2134
Downloads:509
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:A key-point based approach for long-term visual tracking
Abstract:
In the thesis the problem of long-term visual tracking is addressed. The main challenges of the problem are on-line learning of the target's visual appearance, recognition of target's absence and it's redetection. A part-based tracker is proposed using local features and affine transformation. Long-term tracking is performed with tracking-by-detection, supported by optical flow in the short term. Two nested methods are used when fitting the transformation: firstly, a cluster of potential target points is defined, then the affine deformation is robustly estimated. New model features are added based on the global shape template, that is updated by the features themselves, forming a feedback-loop. The tracker is tested on two groups of sequences, the first targeting long-term and the second short-term trackers. The results are compared with the state-of-the-art methods. The performance of the tracker is comparable, though the problem of redetection should be more carefully addressed.

Keywords:computer vision, long-term visual tracking, online learning, general Hough transform, affine transformation, computer science, computer and information science, diploma

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back