izpis_h1_title_alt

Analiza in uporaba MapReduce za priporočilne sisteme : diplomsko delo
ID Vezočnik, Melanija (Author), ID Jurič, Matjaž Branko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,07 MB)
MD5: 163A4F6A915412A6FD5CC29B0DB10576
PID: 20.500.12556/rul/6514ff37-631f-4839-a72c-8e83423cb787

Abstract
MapReduce je programski model, namenjen za razvoj skalabilnih paralelnih aplikacij za obdelavo velikih množic podatkov, izvajalno okolje, ki podpira programski model in koordinira izvajanje programov, in implementacija programskega modela in izvajalnega okolja. Cilj diplomskega dela je analizirati MapReduce in ga preizkusiti na dveh primerih priporočilnih sistemov. Cilj smo dosegli, saj smo uspeli realizirati izračun s pomočjo MapReduce na testnih primerih. Najprej smo analizirali programski model in izvajalno okolje ter primerjali tri implementacije MapReduce: Hadoop MapReduce, MongoDB in knjižnico MapReduce-MPI. Ugotovili smo, da je za realizacijo izbranih primerov priporočilnih sistemov najprimernejša implementacija Hadoop MapReduce, saj nudi toleranco za okvare in reproducira podatke, s čimer zagotavlja zanesljivost. Nato smo z uporabo navidezne naprave Cloudera QuickStart VM, ki je gruča Hadoop z enim vozliščem, realizirali izbrana primera priporočilnih sistemov.

Language:Slovenian
Keywords:Hadoop MapReduce, knjižnica MapReduce-MPI, MapReduce, MongoDB, priporočilni sistemi, računalništvo, računalništvo in informatika, univerzitetni študij, interdisciplinarni študij, diplomske naloge
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Publisher:[M. Vezočnik]
Year:2014
Number of pages:65 str.
PID:20.500.12556/RUL-29534 This link opens in a new window
COBISS.SI-ID:1536144323 This link opens in a new window
Publication date in RUL:22.09.2014
Views:2143
Downloads:539
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis and use of MapReduce for recommender Systems
Abstract:
MapReduce is a programming model for developing scalable parallel applications for processing large data sets, an execution framework that supports the programming model and coordinates the execution of programs and an implementation of the programming model and the execution framework. The goal of the thesis is to analyse MapReduce and to use it on two examples of recommender systems. The goal is achieved by developing the computation with MapReduce successfully. At first the programming model and the execution framework are analysed and three implementations for MapReduce: Hadoop MapReduce, MongoDB and MapReduce-MPI Library are compared. It is discovered that Hadoop MapReduce is the most suitable implementation for developing the selected examples of recommender systems as it provides fault tolerance and data reproduction which ensure reliability. Then the selected examples of recommender systems are developed using Cloudera QuickStart VM which is a one node Hadoop cluster.

Keywords:Hadoop MapReduce, MapReduce, MapReduce-MPI Library, MongoDB, recommender systems, computer science, computer and information science, interdisciplinary studies, diploma

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back