izpis_h1_title_alt

Dinamična izbira metod za profiliranje spletnih uporabnikov : diplomsko delo
ID Ambrožič, Marko (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (443,49 KB)
MD5: 5CF151808D3BA73AC93FE5BFA4703D54
PID: 20.500.12556/rul/8bdf94a4-1170-4475-bf6e-b60449a79ef9

Abstract
Profiliranje uporabnikov postaja vse bolj pomembna tema pri razvoju spletnih strani, saj omogoča zagotavljanje boljše uporabniške izkušnje z ugotavljanjem uporabnikovih interesov. V tem delu se ukvarjamo z dinamično izbiro metod profiliranja uporabnikov. Cilj je uporabiti metode strojnega učenja in zgraditi učni model, ki bo znal kar najbolje kombinirati metode profiliranja in tako ustvariti kombinirano metodo profiliranja, uspešnejšo od vsake posamezne metode, ki smo jih uporabili pri učenju. Pokazali smo, da je kombiniranje profilirnih algoritmov z uporabo strojnega učenja lahko močno orodje pri izboljšavi uspešnosti profiliranja. Pokazali smo tudi, da je uporaba dinamične izbire metod smiselna v primeru, ko so razlike med posameznimi algoritmi profiliranja večje in so tako tudi možnosti za izboljšave večje.

Language:Slovenian
Keywords:dinamična izbira metod, profiliranje uporabnikov, strojno učenje, računalništvo, računalništvo in informatika, univerzitetni študij, diplomske naloge
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Publisher:[M. Ambrožič]
Year:2014
Number of pages:34 str.
PID:20.500.12556/RUL-29444 This link opens in a new window
COBISS.SI-ID:1536078275 This link opens in a new window
Publication date in RUL:09.09.2014
Views:1793
Downloads:363
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Dynamic method selection for profiling web users
Abstract:
User profiling is becoming an increasingly important subject in the field of web development as it enables improving the user experience through learning the users interests. In this study we examine dynamic selection of web user profiling methods. Our goal is to use machine learning methods to build a learning model that predicts the most successful combined profiling method, which is expected to be significantly better from each individual method. We have shown that combining of profiling methods using machine learning can be a powerful tool when looking for a way of improving the accuracy of web user profiles. We have also shown that dynamic selection is most effective when differences between profiling methods are relatively large and therefore providing room for improvement.

Keywords:dynamic method selection, user profiling, machine learning, omputer science, computer and information science, diploma

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back