Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Dinamična izbira metod za profiliranje spletnih uporabnikov : diplomsko delo
ID
Ambrožič, Marko
(
Author
),
ID
Bosnić, Zoran
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(443,49 KB)
MD5: 5CF151808D3BA73AC93FE5BFA4703D54
PID:
20.500.12556/rul/8bdf94a4-1170-4475-bf6e-b60449a79ef9
Image galllery
Abstract
Profiliranje uporabnikov postaja vse bolj pomembna tema pri razvoju spletnih strani, saj omogoča zagotavljanje boljše uporabniške izkušnje z ugotavljanjem uporabnikovih interesov. V tem delu se ukvarjamo z dinamično izbiro metod profiliranja uporabnikov. Cilj je uporabiti metode strojnega učenja in zgraditi učni model, ki bo znal kar najbolje kombinirati metode profiliranja in tako ustvariti kombinirano metodo profiliranja, uspešnejšo od vsake posamezne metode, ki smo jih uporabili pri učenju. Pokazali smo, da je kombiniranje profilirnih algoritmov z uporabo strojnega učenja lahko močno orodje pri izboljšavi uspešnosti profiliranja. Pokazali smo tudi, da je uporaba dinamične izbire metod smiselna v primeru, ko so razlike med posameznimi algoritmi profiliranja večje in so tako tudi možnosti za izboljšave večje.
Language:
Slovenian
Keywords:
dinamična izbira metod
,
profiliranje uporabnikov
,
strojno učenje
,
računalništvo
,
računalništvo in informatika
,
univerzitetni študij
,
diplomske naloge
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Publisher:
[M. Ambrožič]
Year:
2014
Number of pages:
34 str.
PID:
20.500.12556/RUL-29444
COBISS.SI-ID:
1536078275
Publication date in RUL:
09.09.2014
Views:
1793
Downloads:
363
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Dynamic method selection for profiling web users
Abstract:
User profiling is becoming an increasingly important subject in the field of web development as it enables improving the user experience through learning the users interests. In this study we examine dynamic selection of web user profiling methods. Our goal is to use machine learning methods to build a learning model that predicts the most successful combined profiling method, which is expected to be significantly better from each individual method. We have shown that combining of profiling methods using machine learning can be a powerful tool when looking for a way of improving the accuracy of web user profiles. We have also shown that dynamic selection is most effective when differences between profiling methods are relatively large and therefore providing room for improvement.
Keywords:
dynamic method selection
,
user profiling
,
machine learning
,
omputer science
,
computer and information science
,
diploma
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back