Details

10 let po sprejemu ustavnega zakona o dopolnitvi 80. člena ustave : diplomsko delo
ID Špes, Mitja (Author), ID Kocjančič, Rudi (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (395,17 KB)
MD5: E374A3BAFB016C022F1EEAA173394593
PID: 20.500.12556/rul/00d59591-786f-4f30-9416-8723badf3722

Language:Slovenian
Keywords:volilni sistem, večinski volilni sistem, proporcionalni volilni sistem, referendum, ustavni zakon, beneška komisija, diplomske naloge
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FU - Faculty of Administration
Place of publishing:Ljubljana
Publisher:[M. Špes]
Year:2011
Number of pages:IX, 42 str.
PID:20.500.12556/RUL-2686 This link opens in a new window
UDC:342.8(043.2)
COBISS.SI-ID:3653550 This link opens in a new window
Publication date in RUL:11.07.2014
Views:2259
Downloads:425
Metadata:XML DC-XML DC-RDF
:
ŠPES, Mitja, 2011, 10 let po sprejemu ustavnega zakona o dopolnitvi 80. člena ustave : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : M. Špes. [Accessed 10 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=2686
Copy citation
Share:Bookmark and Share

Similar documents

Similar works from RUL:
  1. DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION
  2. Part of speech tagging of slovene language using deep neural networks
  3. Automatic classification of buildings with deep learning
  4. Object detection and classification in aquatic environment using convolutional neural networks
  5. Superposition and compression of deep neutral networks
Similar works from other Slovenian collections:
  1. Time series classification based on convolutional neural networks
  2. The preparation of photos' dataset and its classification using deep neural networks
  3. Prediction of geospatial raster data using convolutional neural networks
  4. Development of an advanced system for lane detection on GPU platforms
  5. Comparison of different deep neural network learning algorithms in autonomous driving

Back