Details

Vpliv togosti prečnih ojačitev na obnašanje polnostenskih nosilcev : diplomska naloga
ID Piculin, Sara (Author), ID Beg, Darko (Mentor) More about this mentor... This link opens in a new window, ID Sinur, Franc (Comentor)

.pdfPDF - Presentation file, Download (6,39 MB)
MD5: D151A08F55B4CA9783BC8148F8BC9453
PID: 20.500.12556/rul/09dcdef1-7d08-4c39-bba7-3fb79ade0b62

Language:Slovenian
Keywords:gradbeništvo, diplomska dela, UNI, jeklene konstrukcije, polnostenski nosilci, izbočenje pločevin, prečne ojačitve, togost prečnih ojačitev
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FGG - Faculty of Civil and Geodetic Engineering
Place of publishing:Ljubljana
Publisher:[S. Piculin]
Year:2013
Number of pages:XIII, 101 str.
PID:20.500.12556/RUL-2412 This link opens in a new window
UDC:624.014.2:624.072.2(043.2)
COBISS.SI-ID:6223457 This link opens in a new window
Publication date in RUL:11.07.2014
Views:5703
Downloads:828
Metadata:XML DC-XML DC-RDF
:
PICULIN, Sara, 2013, Vpliv togosti prečnih ojačitev na obnašanje polnostenskih nosilcev : diplomska naloga [online]. Bachelor’s thesis. Ljubljana : S. Piculin. [Accessed 10 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=2412
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Influence of transverse stiffeners on plate girder behaviour
Keywords:graduation thesis, civil engineering, steel structures, plate girders, plate buckling, transferse stiffeners, stiffeners stiffness

Similar documents

Similar works from RUL:
  1. DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION
  2. Part of speech tagging of slovene language using deep neural networks
  3. Automatic classification of buildings with deep learning
  4. Object detection and classification in aquatic environment using convolutional neural networks
  5. Superposition and compression of deep neutral networks
Similar works from other Slovenian collections:
  1. Time series classification based on convolutional neural networks
  2. The preparation of photos' dataset and its classification using deep neural networks
  3. Prediction of geospatial raster data using convolutional neural networks
  4. Development of an advanced system for lane detection on GPU platforms
  5. Comparison of different deep neural network learning algorithms in autonomous driving

Back