Details

Geografske možnosti rabe obnovljivih virov energije v občini Brežice : diplomsko delo
ID Kolar, Boštjan (Author), ID Vintar Mally, Katja (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,94 MB)
MD5: D826C0945F5146596A13D8C1840A2D48
PID: 20.500.12556/rul/07f4bf73-3216-483c-bd75-fecf4e871ec6

Language:Slovenian
Keywords:diplomska dela, geografske diplome, Slovenija, Brežice, energetski viri, obnovljivi energetski viri, varstvo okolja
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FF - Faculty of Arts
Place of publishing:Ljubljana
Publisher:[B. Kolar]
Year:2013
Number of pages:100 f.
PID:20.500.12556/RUL-23773 This link opens in a new window
UDC:502.174.3(497.433)
COBISS.SI-ID:51540066 This link opens in a new window
Publication date in RUL:11.07.2014
Views:2330
Downloads:459
Metadata:XML DC-XML DC-RDF
:
KOLAR, Boštjan, 2013, Geografske možnosti rabe obnovljivih virov energije v občini Brežice : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : B. Kolar. [Accessed 10 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=23773
Copy citation
Share:Bookmark and Share

Similar documents

Similar works from RUL:
  1. DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION
  2. Part of speech tagging of slovene language using deep neural networks
  3. Automatic classification of buildings with deep learning
  4. Object detection and classification in aquatic environment using convolutional neural networks
  5. Superposition and compression of deep neutral networks
Similar works from other Slovenian collections:
  1. Time series classification based on convolutional neural networks
  2. The preparation of photos' dataset and its classification using deep neural networks
  3. Prediction of geospatial raster data using convolutional neural networks
  4. Development of an advanced system for lane detection on GPU platforms
  5. Comparison of different deep neural network learning algorithms in autonomous driving

Back