Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Item response theory modeling for microarray gene expression data
ID
Kastrin, Andrej
(
Avtor
)
URL - Predstavitvena datoteka, za dostop obiščite
http://mrvar.fdv.uni-lj.si/pub/mz/mz6.1/kastrin.pdf
Galerija slik
Izvleček
The high dimensionality of global gene expression profiles, where number of variables (genes) is very large compared to the number of observations (samples), presents challenges that affect generalizability and applicability of microarray analysis. Latent variable modeling offers a promising approach to deal with high-dimensional microarray data. The latent variable model is based on a few latent variables that capture most of the gene expression information. Here, we describe how to accomplish a reduction in dimension by alatent variable methodology, which can greatly reduce the number of features used to characterize microarray data. We propose a general latent variable framework for prediction of predefined classes of samples using gene expression profiles from microarray experiments. The framework consists of (i) selection of smaller number of genes that are most differentially expressed between samples, (ii) dimension reduction using hierarchical clustering, where each cluster partition is identified as latent variable, (iii) discretization of gene expression matrix, (iv) fitting the Rasch item response model for genes in each cluster partition to estimate the expression of latent variable, and (v) construction of prediction model with latent variables as covariates to study the relationship between latent variables and phenotype. Two different microarray data sets are used to illustrate a general framework of the approach. We show that the predictive performance of our method is comparable to the current best approach based on an all-gene space. The method is general and can be applied to the other high-dimensional data problems.
Jezik:
Angleški jezik
Vrsta gradiva:
Delo ni kategorizirano
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FDV - Fakulteta za družbene vede
Leto izida:
2009
Št. strani:
Str. 51-67
Številčenje:
Vol. 6, no. 1
PID:
20.500.12556/RUL-23036
UDK:
519.7
ISSN pri članku:
1854-0023
COBISS.SI-ID:
28668253
Datum objave v RUL:
11.07.2014
Število ogledov:
2003
Število prenosov:
197
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Advances in methodology and statistics
Skrajšan naslov:
Metodol. zv.
Založnik:
Fakulteta za družbene vede
ISSN:
1854-0023
COBISS.SI-ID:
215795712
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj