izpis_h1_title_alt

Robustness of the fisher's discriminant function to skew-curved normal distribution
ID Sever, Maja (Avtor), ID Lajovic, Jaro (Avtor), ID Rajer, Borut (Avtor)

URLURL - Predstavitvena datoteka, za dostop obiščite http://mrvar.fdv.uni-lj.si/pub/mz/mz2.1/sever.pdf Povezava se odpre v novem oknu

Izvleček
Discriminant analysis is a widely used multivariate technique with Fisher's discriminant analysis (FDA) being its most venerable form. FDA assumes equality of population covariance matrices, but does not require multivariate normality. Nevertheless, the latter is desirable for optimal classification. To test FDA's performance under non-normality caused by skewness the method was assessed with simulation based on a skew-curved normal (SCN) distribution belonging to the family of skew-generalised normal distributions; additionally, effects of sample size and rotation were evaluated. Apparent error rate (APER) was used as the measure of classification performance. The analysis was performed using ANOVA with (transformed) mean APER as the dependent variable. Results show the FDA to be highly robust to skewness introduced into the model via the SCN distributed simulated data.

Jezik:Angleški jezik
Vrsta gradiva:Delo ni kategorizirano
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FDV - Fakulteta za družbene vede
Leto izida:2005
Št. strani:Str. 231-242
Številčenje:Vol. 2, no. 2
PID:20.500.12556/RUL-22454 Povezava se odpre v novem oknu
UDK:303
ISSN pri članku:1854-0023
COBISS.SI-ID:24315741 Povezava se odpre v novem oknu
Datum objave v RUL:11.07.2014
Število ogledov:1689
Število prenosov:244
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Advances in methodology and statistics
Skrajšan naslov:Metodol. zv.
Založnik:Fakulteta za družbene vede
ISSN:1854-0023
COBISS.SI-ID:215795712 Povezava se odpre v novem oknu

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj