Details

Mehansko testiranje 3D tiskanih pnevmatskih aktuatorjev GRACE
ID Križnik, Florjan (Author), ID Lebar, Andrej (Mentor) More about this mentor... This link opens in a new window, ID Sabotin, Izidor (Comentor)

.pdfPDF - Presentation file, Download (6,77 MB)
MD5: 6EC54D1C648170907D91D8272B3D9A30

Abstract
V nalogi smo mehansko testirali 3D natisnjene pnevmatske aktuatorje GRACE. Ti mehki aktuatorji, zasnovani po vzoru bioloških mišic, so uporabni zaradi svoje prilagodljivosti in učinkovitosti. Med pisanjem naloge smo ovrednotili njihovo zmogljivost glede na raztezke (oziroma skrčke) in sile, ustvarjene pri različnih tlakih, ter izbrali in optimizirali najprimernejši aktuator za uporabo v ortotiki. V nalogi je zajeta priprava testnih aktuatorjev, izdelanih s 3D tiskom SLA, vizualni pregled za izločitev neprimernih primerkov ter prilagoditev preizkuševališča za izvajanje meritev. Testiranje je vključevalo merjenje raztezkov in sil pri natančno nadzorovanih pogojih, pri čemer smo uporabili senzor tlaka in merilnik sile, ter kamero za merjenje raztezkov. Dobljene podatke smo obdelali in analizirali ter tako določili lastnosti posameznih aktuatorjev. Izbrali smo najbolj primeren aktuator, ki smo ga nato poskusili izboljšati s spremembami v zasnovi. V delu spoznamo prednosti GRACE aktuatorjev, kot so njihova fleksibilnost, možnost optimizacije za različne aplikacije ter sposobnost ponovljivih rezultatov. Naloga prispeva k razvoju prilagodljivih tehnologij, primernih za uporabo v robotiki, medicini in drugih bioinspiriranih področjih.

Language:Slovenian
Keywords:pnevmatski mehki aktuatorji, 3D tisk, mehansko testiranje, zmogljivost aktuatorjev, protetika in ortotika
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Year:2025
Number of pages:XX, 68 str.
PID:20.500.12556/RUL-167595 This link opens in a new window
UDC:620.17:621.5:615.477(043.2)
COBISS.SI-ID:227934211 This link opens in a new window
Publication date in RUL:02.03.2025
Views:170
Downloads:55
Metadata:XML DC-XML DC-RDF
:
KRIŽNIK, Florjan, 2025, Mehansko testiranje 3D tiskanih pnevmatskih aktuatorjev GRACE [online]. Master’s thesis. [Accessed 14 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=167595
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Mechanical testing of 3D printed pneumatic actuators GRACE
Abstract:
In the thesis, we mechanically tested 3D-printed pneumatic GRACE actuators. These soft actuators, inspired by biological muscles, are valuable due to their flexibility and efficiency. The research evaluated their performance in terms of elongation (or contraction) and force generated under different pressure levels, ultimately selecting and optimizing the most suitable actuator for use in orthotics. Thesis encompassed the preparation of test actuators fabricated using SLA 3D printing, a visual inspection to eliminate defective samples, and the adaptation of the testing setup for conducting measurements. Testing involved measuring elongation and force under precisely controlled conditions, utilizing a pressure sensor, a force gauge, and a camera for elongation measurement. The collected data was processed and analysed to identify the properties of each actuator. We selected the most suitable actuator and attempted to enhance it through design modifications. Thesis highlights the advantages of GRACE actuators, including their flexibility, potential for optimization across various applications, and ability to deliver consistent results. This work contributes to the development of adaptable technologies suitable for use in robotics, medicine, and other bio-inspired fields.

Keywords:pneumatic soft actuatos, 3D printing, mechanical testing, actuator performance, prosthetics and orthotics

Similar documents

Similar works from RUL:
  1. Automatic segmentation of ethnomusicological field recordings
  2. Deep learning on genomic and phylogenetic data
  3. Context-aware ear detection
  4. Emergence of communication among agents based on deep learning with predictive processing
  5. Object detection and classification in aquatic environment using convolutional neural networks
Similar works from other Slovenian collections:
  1. Time series classification based on convolutional neural networks
  2. No interface, no problem
  3. Zaznavanje sentimenta v novicah z globokimi nevronskimi mrežami
  4. Finger recognition using deep learning
  5. Development of artifical intelligence in technology multinationals

Back