Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Computational methods for detecting insect vibrational signals in field vibroscape recordings
ID
Marolt, Matija
(
Avtor
),
ID
Pesek, Matevž
(
Avtor
),
ID
Šturm, Rok
(
Avtor
),
ID
López Díez, Juan José
(
Avtor
),
ID
Rexhepi, Behare
(
Avtor
),
ID
Virant-Doberlet, Meta
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,46 MB)
MD5: 06F17890D5FB4EEF65B088398C1967A1
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S1574954125000123
Galerija slik
Izvleček
The ecological significance of vibroscape has been largely overlooked, excluding an important part of the available information from ecosystem assessment. Insects rely primarily on substrate-borne vibrational signalling in their communication, which is why the majority of terrestrial insects are excluded from passive acoustic monitoring. The ability to monitor the biological component of the natural vibroscape has been limited due to a lack of data and methods to analyse the data. In this paper, we evaluate the use of deep learning models to automatically detect and classify vibrational signals from field recordings obtained with laser vibrometry. We created a dataset of annotated vibroscape recordings of meadow habitats, containing vibrational signals categorized as pulses, harmonic signals, pulse trains, and complex signals. We compared different deep neural network architectures for the detection and classification of vibrational signals, including convolutional and transformer models. The PaSST transformer architecture, which was fine-tuned from a pre-trained checkpoint demonstrated the highest performance on all tasks, achieving an average precision of 0.79 in signal detection. For signals with more than one hour of annotated data, the classification models achieved instance-based F1-scores above 0.8, enabling automatic analysis of activity patterns. In our case study, where 24-hour field recordings were analysed, the trained models (even those with lower precision) revealed interesting activity patterns of different species. The presented study, together with the dataset we publish with this paper, lays the foundation for further analysis of the vibroscape and the development of automated methods for ecotremological monitoring that complement passive acoustic monitoring and provide a comprehensive approach to ecosystem assessment.
Jezik:
Angleški jezik
Ključne besede:
vibroscape
,
ecotremology
,
deep learning
,
automatic classification
,
biotremology
,
insects
,
zoology
,
laser vibrometry
,
ecosystem assessment
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
BF - Biotehniška fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
10 str.
Številčenje:
Vol. 86, art. 103003
PID:
20.500.12556/RUL-166704
UDK:
591
ISSN pri članku:
1878-0512
DOI:
10.1016/j.ecoinf.2025.103003
COBISS.SI-ID:
223198211
Datum objave v RUL:
22.01.2025
Število ogledov:
145
Število prenosov:
717
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Ecological informatics
Založnik:
Elsevier
ISSN:
1878-0512
COBISS.SI-ID:
62725635
Licence
Licenca:
CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:
Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
vibracijska krajina
,
ekotremologija
,
globoko učenje
,
avtomatska klasifikacija
,
biotremologija
,
žuželke
,
zoologija
,
laserska vibrometrija
,
ocena ekosistema
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
J1-3016
Naslov:
Vibracijska krajina: odkrivanje prezrtega sveta vibracijske komunikacije
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P1-0255
Naslov:
Združbe, interakcije in komunikacije v ekosistemih
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
Z1-50018
Naslov:
Ekotremologija - vpogled v biodiverziteto in interakcije znotraj vibracijske združbe
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj