Details

Samodejna segmentacija satelitskih slik na podlagi šumnih oznak
ID Šuler, Kristijan (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window, ID Račič, Matej (Comentor)

.pdfPDF - Presentation file, Download (3,66 MB)
MD5: 66C647C177C26880CA08ACC79E1BF33A

Abstract
V delu preučujemo vpliv šuma v oznakah na samodejno razpoznavo področij v satelitskih slikah. Pridobivanje oznak je na tem področju namreč izziv. Veliko jih je pridobljenih iz virov, ki niso usklajeni s slikovnimi podatki. Prihaja do prostorskih odstopanj ter zamenjave razredov posameznih območij. V študiji obravnavamo več uveljavljenih metod strojnega učenja, ki smo jih preizkusili na različnih vrstah šuma, ki je lahko prisoten pri oznakah satelitskih slik. Posebej se osredotočimo na metode globokega učenja, ki dosegajo dobre rezultate v računalniškem vidu. Te metode so do neke mere že robustne na šum v oznakah, dodatno pa preizkusimo tudi ogrodje DivideMix, ki je narejeno prav za učenje na šumnih podatkih. Vpliv šuma eksperimentalno ovrednotimo na realnem problemu določanja dejanske rabe kmetijskih in gozdnih zemljišč v Republiki Sloveniji. Rezultati študije kažejo, da so metode globokega učenja robustne na nizke do srednje vrednosti šuma v oznakah. Kadar pa je šuma v oznakah veliko, lahko z ogrodjem DivideMix dosežemo izboljšanje. Obenem so se za zelo robustne izkazale tudi klasične metode strojnega učenja.

Language:Slovenian
Keywords:računalniški vid, šumne oznake, satelitske slike, samodejna segmentacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-166035 This link opens in a new window
COBISS.SI-ID:220047107 This link opens in a new window
Publication date in RUL:18.12.2024
Views:241
Downloads:105
Metadata:XML DC-XML DC-RDF
:
ŠULER, Kristijan, 2024, Samodejna segmentacija satelitskih slik na podlagi šumnih oznak [online]. Master’s thesis. [Accessed 5 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=166035
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic segmentation of satellite images using noisy labels
Abstract:
In this work, we examine the impact of label noise on the actual recognition of areas in satellite images. Acquiring labels in this field is challenging, as many of the labels are obtained from sources which are not aligned with the image data. Spatial deviations and misclassifications of specific regions also occur. In this thesis, we discuss several established machine learning methods, which were then tested on the different types of noise that can be present in satellite image labels, with an in-depth focus on those deep learning methods that achieve satisfactory results in computer vision. These methods are already more or less robust when it comes to label noise. Additionally, we tested the DivideMix framework, which is specifically designed for learning from noisy data. The impact of noise is experimentally evaluated on the real problem of determining the actual use of agricultural and forest land in the Republic of Slovenia. The results of this thesis show that deep learning methods are robust to low to medium levels of label noise. However, when the level of label noise is high, the DivideMix framework can be used to improve results. Next to that, classical machine learning methods have also proven to be very robust.

Keywords:computer vision, noisy labels, satellite images, automatic segmentation

Similar documents

Similar works from RUL:
  1. Forecasting Solar Power Production by Using Satellite Images
  2. Automatic segmentation of white spot lesions on smooth tooth surfaces
  3. The use of Leaflet Javscript library for visualization of satellite images
  4. Automatic profile picture validation
  5. Razpoznavanje hrane na podlagi slik z nevronskimi mrežami
Similar works from other Slovenian collections:
  1. Object detection in satellite images with deep learning methods on embedded system
  2. AUTOMATIC MOUTH DETECTION IN DIGITAL IMAGES
  3. Food recognition from digital images using convolutional neural networks
  4. Interaktivna vizualizacija tridimenzionalnih slik
  5. Transferring the style of satellite images using generative adversarial neural networks

Back