Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Samodejna segmentacija satelitskih slik na podlagi šumnih oznak
ID
Šuler, Kristijan
(
Author
),
ID
Čehovin Zajc, Luka
(
Mentor
)
More about this mentor...
,
ID
Račič, Matej
(
Comentor
)
PDF - Presentation file,
Download
(3,66 MB)
MD5: 66C647C177C26880CA08ACC79E1BF33A
Image galllery
Abstract
V delu preučujemo vpliv šuma v oznakah na samodejno razpoznavo področij v satelitskih slikah. Pridobivanje oznak je na tem področju namreč izziv. Veliko jih je pridobljenih iz virov, ki niso usklajeni s slikovnimi podatki. Prihaja do prostorskih odstopanj ter zamenjave razredov posameznih območij. V študiji obravnavamo več uveljavljenih metod strojnega učenja, ki smo jih preizkusili na različnih vrstah šuma, ki je lahko prisoten pri oznakah satelitskih slik. Posebej se osredotočimo na metode globokega učenja, ki dosegajo dobre rezultate v računalniškem vidu. Te metode so do neke mere že robustne na šum v oznakah, dodatno pa preizkusimo tudi ogrodje DivideMix, ki je narejeno prav za učenje na šumnih podatkih. Vpliv šuma eksperimentalno ovrednotimo na realnem problemu določanja dejanske rabe kmetijskih in gozdnih zemljišč v Republiki Sloveniji. Rezultati študije kažejo, da so metode globokega učenja robustne na nizke do srednje vrednosti šuma v oznakah. Kadar pa je šuma v oznakah veliko, lahko z ogrodjem DivideMix dosežemo izboljšanje. Obenem so se za zelo robustne izkazale tudi klasične metode strojnega učenja.
Language:
Slovenian
Keywords:
računalniški vid
,
šumne oznake
,
satelitske slike
,
samodejna segmentacija
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2024
PID:
20.500.12556/RUL-166035
COBISS.SI-ID:
220047107
Publication date in RUL:
18.12.2024
Views:
241
Downloads:
105
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠULER, Kristijan, 2024,
Samodejna segmentacija satelitskih slik na podlagi šumnih oznak
[online]. Master’s thesis. [Accessed 5 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=166035
Copy citation
Share:
Secondary language
Language:
English
Title:
Automatic segmentation of satellite images using noisy labels
Abstract:
In this work, we examine the impact of label noise on the actual recognition of areas in satellite images. Acquiring labels in this field is challenging, as many of the labels are obtained from sources which are not aligned with the image data. Spatial deviations and misclassifications of specific regions also occur. In this thesis, we discuss several established machine learning methods, which were then tested on the different types of noise that can be present in satellite image labels, with an in-depth focus on those deep learning methods that achieve satisfactory results in computer vision. These methods are already more or less robust when it comes to label noise. Additionally, we tested the DivideMix framework, which is specifically designed for learning from noisy data. The impact of noise is experimentally evaluated on the real problem of determining the actual use of agricultural and forest land in the Republic of Slovenia. The results of this thesis show that deep learning methods are robust to low to medium levels of label noise. However, when the level of label noise is high, the DivideMix framework can be used to improve results. Next to that, classical machine learning methods have also proven to be very robust.
Keywords:
computer vision
,
noisy labels
,
satellite images
,
automatic segmentation
Similar documents
Similar works from RUL:
Forecasting Solar Power Production by Using Satellite Images
Automatic segmentation of white spot lesions on smooth tooth surfaces
The use of Leaflet Javscript library for visualization of satellite images
Automatic profile picture validation
Razpoznavanje hrane na podlagi slik z nevronskimi mrežami
Similar works from other Slovenian collections:
Object detection in satellite images with deep learning methods on embedded system
AUTOMATIC MOUTH DETECTION IN DIGITAL IMAGES
Food recognition from digital images using convolutional neural networks
Interaktivna vizualizacija tridimenzionalnih slik
Transferring the style of satellite images using generative adversarial neural networks
Back