izpis_h1_title_alt

Strojno pospešeno izvajanje globokih difuzijskih modelov v spletnem brskalniku
ID Bačar, Neža (Author), ID Bohak, Ciril (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (21,68 MB)
MD5: B5C9ED8F3D4E4CEF113BD5FC2E43A48B

Abstract
V zadnjem času je področje umetne inteligence doživelo velik razcvet, pri čemer so veliko pozornosti pritegnili pristopi za proceduralno generiranje slik in videoposnetkov na podlagi podanega opisa. Leta 2022 je bil izdan odprtokodni model, imenovan Stabilna difuzija. Magistrska naloga obravnava implementacijo modela v obliki spletne aplikacije, ki teče v spletnem brskalniku na strani odjemalca s pomočjo ogrodja ONNX. V delu primerjamo hitrosti izvajanja in kakovost izhodnih slik pri modelih z različno natančnostjo uteži (16 in 8 bitov). Rezultati kažejo, da je izvajanje z uporabo WebAssembly-ja ter centralno procesne enote izvedljivo, vendar počasnejše v primerjavi s tradicionalnimi metodami, ki uporabljajo strežniške rešitve in zmogljivejše grafične procesne enote. Kljub trenutnim izzivom pri podpori za izvajanje inference v brskalniku preko grafične procesne enote, ogrodje ONNX ponuja obetavne možnosti za širšo dostopnost in uporabo naprednih tehnologij umetne inteligence v vsakodnevnih spletnih aplikacijah. Rezultat naloge je razvita implementacija modela Stabilne difuzije 2.1 v obliki spletne aplikacije ter primerjava časa izvajanja ter kakovosti izhodnih slik z obstoječimi rešitvami.

Language:Slovenian
Keywords:stabilna difuzija, difuzijski modeli, spletni brskalnik, generativna umetna inteligenca
Work type:Master's thesis
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-165309 This link opens in a new window
COBISS.SI-ID:218124547 This link opens in a new window
Publication date in RUL:02.12.2024
Views:89
Downloads:18
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Running hardware-accelerated deep diffusion models in a web browser
Abstract:
Recently, the field of artificial intelligence has experienced significant growth, with approaches for procedural generation of images and videos based on a given description attracting a great deal of attention. In 2022, an open-source model called Stable Diffusion was released. This master's thesis addresses the implementation of the model as a web application that runs on the client side in a web browser using the ONNX framework. The study compares execution speeds and output image quality for models with different weight precisions (16 and 8 bits). The results show that execution using WebAssembly and the central processing unit is feasible but slower compared to traditional methods that utilize server-side solutions and more powerful graphics processing units. Despite current challenges in supporting inference in browsers using graphics processing units, the ONNX framework offers promising possibilities for broader accessibility and the use of advanced artificial intelligence technologies in everyday web applications. The outcome of the thesis is the developed implementation of the Stable Diffusion 2.1 model as a web application and a comparison of execution times and output image quality with existing solutions.

Keywords:stable diffusion, diffusion models, web browser, generative artificial intelligence

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back