izpis_h1_title_alt

Večagentni sistem za porazdeljeno krmiljenje kibernetsko-fizičnih sistemov
ID Malus, Andreja (Author), ID Vrabič, Rok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (7,28 MB)
MD5: 877B7A28062829796C333FAD017AD852

Abstract
V raziskavi je obravnavan problem krmiljenja kompleksnih kibernetsko-fizičnih proizvodnih sistemov, v katerih zaradi kompleksnosti in medsebojne povezanosti elementov tradicionalne metode niso več učinkovite. Uporabljen je bil večagentni pristop h krmiljenju, ki omogoča fleksibilno in prilagodljivo obvladovanje zahtevnih scenarijev. Razvit je bil model večagentnega sistema, v katerem avtonomni agenti na podlagi lokalnih informacij in ciljev sodelujejo za dosego učinkovitega globalnega obnašanja sistema. Hipoteza, da je tak pristop bolj skalabilen, robustnejši in odpornejši od centraliziranih pristopov, je bila preverjena s primeroma krmiljenja tlaka v industrijskih sistemih za stisnjen zrak in dodeljevanja nalog avtonomnim mobilnim robotom v intralogističnih sistemih. Rezultati so pokazali, da večagentni pristop izboljšuje skalabilnost, robustnost in odpornost sistema, kar potrjuje postavljeno hipotezo.

Language:Slovenian
Keywords:proizvodni sistemi, kibernetsko-fizični sistemi, porazdeljeno krmiljenje, večagentni sistemi, spodbujevalno učenje, industrijski internet stvari
Work type:Doctoral dissertation
Organization:FS - Faculty of Mechanical Engineering
Year:2024
PID:20.500.12556/RUL-165108 This link opens in a new window
Publication date in RUL:23.11.2024
Views:18
Downloads:2
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Unknown
Title:Multiagent system for distributed control of cyber-physical systems
Abstract:
The thesis addresses the problem of control in complex cyber-physical production systems, where traditional methods are no longer effective due to the complexity and interconnectedness of elements. A multiagent approach to control is employed, enabling flexible and adaptable management of challenging scenarios. A multiagent system model is developed, in which autonomous agents collaborate based on local information and goals to achieve effective global system behavior. The hypothesis that this approach is more scalable, robust, and resilient than centralized approaches is tested through two case studies: pressure control in industrial compressed air systems and task allocation to autonomous mobile robots in intralogistic systems. The results demonstrate that the system's scalability, robustness, and resilience are improved by the multiagent approach, confirming the hypothesis.

Keywords:production systems, cyber-physical systems, distributed control, multiagent systems, reinforcement learning, industrial internet of things

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back