izpis_h1_title_alt

Določanje lege strukturne spremembe z uporabo podatkovnih pristopov
ID Knific, Jaka (Author), ID Slavič, Janko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (22,32 MB)
MD5: 7CB94A289CB1D013C772944E74F40A0D

Abstract
Za zaznavanje napak na izdelkih se v industriji pogosto uporablja strojni vid. V primerih, ko to ni mogoče, moramo razviti alternativne metode. V sklopu naloge je bil zasnovan model z avtoenkodersko konvolucijsko nevronsko mrežo, ki na podlagi spektrogramov dinamskega odziva rekonstruira sliko izdelka s prikazano lego napake. Ugotovljeno je bilo, da izdelan model v večini primerov natančno določi lego napake na izdelku in rekonstruira ustrezno sliko.

Language:Slovenian
Keywords:konvolucijska nevronska mreža, pytorch, strukturna dinamika, rekonstrukcija slike, avtoenkoder
Work type:Master's thesis/paper
Organization:FS - Faculty of Mechanical Engineering
Year:2024
PID:20.500.12556/RUL-165105 This link opens in a new window
Publication date in RUL:23.11.2024
Views:26
Downloads:14
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Data-based location identification of structural change
Abstract:
In industry, machine vision is often used for defect detection in products. In cases where this is not feasible, alternative methods must be developed. Within this thesis, a model with an autoencoder convolutional neural network was designed to reconstruct an image of the product, displaying the location of the defect, based on spectrograms of the dynamic response. It was found that in most cases the model accurately determines the defect location on the product and reconstructs the corresponding image.

Keywords:convolutional neural network, pytorch, structural dynamics, image reconstruction, autoencoder

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back