izpis_h1_title_alt

Posplošene diskriminante : delo diplomskega seminarja
ID Kump, Aljaž (Author), ID Dolžan, David (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (140,29 KB)
MD5: 4EA072B0F524EA5736CB3587AB785981

Abstract
S standardno definicijo diskriminante lahko dobimo ekvivalentne pogoje o obstoju kompleksnih ničel le do polinomov tretje stopnje z realnimi koeficienti. V tem delu smo pokazali, da za vsak polinom stopnje $n$ obstaja $n−1$ pogojev $\Delta_{1}(f), \ldots,\Delta_{n−1}(f)$, ki nam povejo, ali ima polinom kompleksno ničlo. Vsak pogoj potrebuje za vhodne podatke le 3 koeficiente, v primerjavi s klasično definicijo diskriminante, ki potrebuje vse. Pokazali smo tudi, da je $f(x) = a_{n}(x−r)^n$ natanko tedaj, ko so vsi pogoji enaki $0$. V primeru, ko so vse ničle realne, se da s pomočjo $\Delta_{1}(f)$ postaviti zgornjo in spodnjo mejo za velikost ničel.

Language:Slovenian
Keywords:polinom, rezultanta, diskriminanta, kompleksne ničle
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-164790 This link opens in a new window
UDC:512
COBISS.SI-ID:214765059 This link opens in a new window
Publication date in RUL:12.11.2024
Views:69
Downloads:7
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Generalized discriminants
Abstract:
With the standard definition of the discriminant, we can obtain equivalent conditions for the existence of complex roots only up to polynomials of degree three with real coefficients. In this work, we have shown that for any polynomial of degree $n$, there are $n−1$ conditions $\Delta_{1}(f),...,\Delta_{n−1}(f)$ that indicate whether the polynomial has a complex root. Each condition requires only 3 coefficients as input, compared to the classical definition of the discriminant, which requires all coefficients. We also demonstrated that $f(x) = a_{n}(x−r)^n$ holds if and only if all the conditions are equal to $0$. In the case where all the roots are real, $\Delta_{1}(f)$ can be used to set an upper and lower bound for the values of the roots.

Keywords:polynomial, resultant, discriminant, complex roots

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back