izpis_h1_title_alt

Non-elastic time series fuzzy clustering for efficient analysis of industrial data sets
ID Stržinar, Žiga (Avtor), ID Pregelj, Boštjan (Avtor), ID Škrjanc, Igor (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (13,09 MB)
MD5: 10912A9624E0E29F4BFE21EA85073EE7
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S1568494624011724 Povezava se odpre v novem oknu

Izvleček
In line with the green transition and digitalization trends, there is an increasing need for effective performance and health monitoring of production machines. Machine operation footprints resonate in quantities such as supply current and pneumatic line pressure, providing valuable insights when analyzed. Examining these low-level signals allows for monitoring and identification of changes in machine operation over time. A critical step in analyzing machine data is clustering, requiring an effective method for calculating time series cluster centroids. This paper introduces Error in Aligned series (ERAL), a novel method that generates a time series centroid that distills the fundamental shape of the underlying datasets. ERAL employs a fuzzy clustering-inspired iterative process for temporal alignment and averaging, avoiding the pathological artifacts often introduced by popular time-warping methods. Our analysis shows that existing methods can create artificial spikes and plateaus, which ERAL mitigates; it remains faithful to the original data shape. Additionally, ERAL offers improvements in computational efficiency and prototype quality. We evaluate the method against Dynamic Time Warping (DTW)-based methods across various datasets, and apply it to a time series clustering task using a real-world industrial dataset. In combination with a fuzzy clustering algorithm, ERAL generates visually convincing clusters. By leveraging fuzzy membership concepts, it achieves robust and adaptable clustering outcomes that reflect real-world data complexity and ambiguity.

Jezik:Angleški jezik
Ključne besede:time series analysis, time series alignment and averaging, prototype, fuzzy clustering, dynamic time warping
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:18 str.
Številčenje:Vol. 167, pt. B, art. 112398
PID:20.500.12556/RUL-164684 Povezava se odpre v novem oknu
UDK:53
ISSN pri članku:1568-4946
DOI:10.1016/j.asoc.2024.112398 Povezava se odpre v novem oknu
COBISS.SI-ID:213912579 Povezava se odpre v novem oknu
Datum objave v RUL:07.11.2024
Število ogledov:67
Število prenosov:12
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Applied soft computing
Založnik:Elsevier
ISSN:1568-4946
COBISS.SI-ID:16080679 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:analiza časovnih vrst, časovna os, mehko rojenje

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0001
Naslov:Sistemi in vodenje

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0219
Naslov:Modeliranje, simulacija in vodenje procesov

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:L2-4454
Naslov:Minimalno-invazivni samorazvijajoči diagnostični sistemi: ključni element tovarn prihodnosti

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj