Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Machine learning driven bioequivalence risk assessment at an early stage of generic drug development
ID
Krajcar, Dejan
(
Avtor
),
ID
Velušček, Dejan
(
Avtor
),
ID
Grabnar, Iztok
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,61 MB)
MD5: 39DF7E0B026BB3C1596C4F412464A1BE
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0939641124003795
Galerija slik
Izvleček
Background: Bioequivalence risk assessment as an extension of quality risk management lacks examples of quantitative approaches to risk assessment at an early stage of generic drug development. The aim of our study was to develop a model-based approach for bioequivalence risk assessment that uses pharmacokinetic and physicochemical characteristics of drugs as predictors and would standardize the first step of risk assessment. Methods: The Sandoz in-house bioequivalence database of 128 bioequivalence studies with poorly soluble drugs (23.5% non-bioequivalent) was used to train and validate the model. Four different modeling approaches, random forest, XGBoost, logistic regression and naïve Bayes, were compared. Results: Among the best performing machine learning models, random forest was selected and optimized for the number of features, resulting in an accuracy of 84% on the test data set. The most important features for prediction were those related to solubility (dose number, acid dissociation constant), absorption and elimination rate, effective permeability, variability of pharmacokinetic endpoints, and absolute bioavailability. All features had a conceivable influence on the model predictions. Conclusion: The model was used to develop a bioequivalence risk assessment approach to categorize drugs in early development into high, medium or low risk classes.
Jezik:
Angleški jezik
Ključne besede:
risk prediction
,
bioequivalence
,
random forest
,
XGBoost
,
logistic regression
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FFA - Fakulteta za farmacijo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
10 str.
Številčenje:
Vol. 205, art. 114553
PID:
20.500.12556/RUL-164595
UDK:
615.015
ISSN pri članku:
0939-6411
DOI:
10.1016/j.ejpb.2024.114553
COBISS.SI-ID:
213536259
Datum objave v RUL:
04.11.2024
Število ogledov:
55
Število prenosov:
24
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
European journal of pharmaceutics and biopharmaceutics
Skrajšan naslov:
Eur. j. pharm. biopharm.
Založnik:
Elsevier
ISSN:
0939-6411
COBISS.SI-ID:
13176839
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
napoved tveganja
,
bioekvivalenca
,
naključni gozd x
,
GBoost
,
logistična regresija
,
zdravila
,
farmakokinetika
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P1-0189
Naslov:
Farmacevtska tehnologija: od dostavnih sistemov učinkovin do terapijskih izidov zdravil pri otrocih in starostnikih
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj