izpis_h1_title_alt

Regresijski model za napovedovanje količine predelanega lesa : magistrsko delo
ID Erzin, Aljaž (Author), ID Grošelj, Jan (Mentor) More about this mentor... This link opens in a new window, ID Dular, Tomaž (Comentor)

.pdfPDF - Presentation file, Download (1,37 MB)
MD5: DF9F7FDED7D8432D982B4670677AA018

Abstract
V magistrski nalogi je razvit regresijski model strojnega učenja za napovedovanje količine predelanega lesa z določenih gozdnih območij. Predelan les se razvršča v dve kategoriji: les za hlode in les za druge izdelke, med drugim drva in celuloza. Ta razdelitev temelji na znatni razliki v vrednosti lesa, saj ima les za hlode bistveno večjo vrednost kot ostali les. Model je prilagojen realnemu procesu, v katerem je najprej izveden natančen popis dreves, ki so namenjena za posek, pri čemer so drevesa razvrščena v kubaturne (debelinske) razrede glede na premer debla. Po poseku je določena količina lesa razdeljena v različne kategorije, kot so hlodi, drva in les za celulozo. Bruto količina, izmerjena pred posekom, in neto količina, izmerjena po poseku, predstavljata osrednji spremenljivki raziskave. Analizi so dodane tudi dodatne značilnosti, kot so vrsta sečnje in tarifni razred, za povečanje natančnosti napovedi. Glavni cilj naloge je razvoj natančnega napovednega modela, ki temelji na zbranih podatkih o poseku in omogoča napovedovanje neto količine posekanega lesa, pripravljenega za transport. Uporabljeni so napredni regresijski modeli, kot so regresor z večplastnim perceptronom, linearna regresija, naključni gozdovi in regresor z gradientno krepitvijo. Metodologija za shranjevanje in nadaljnjo analizo napovedi in rezultatov s pomočjo orodja Power BI prispeva k globljemu razumevanju in analizi dinamike lesnopredelovalne industrije.

Language:Slovenian
Keywords:strojno učenje, model, regresija, linearna regresija, naključni gozd, gradientna krepitvena metoda, nevronska mreža, gozd, drevo, količina, kubatura, napoved
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-164387 This link opens in a new window
UDC:004.8
COBISS.SI-ID:212612355 This link opens in a new window
Publication date in RUL:24.10.2024
Views:64
Downloads:13
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Regression model for forecasting quantities of processed wood
Abstract:
In the master's thesis, a machine learning regression model is developed to predict the quantity of processed wood from specific forest areas. The processed wood is classified into two categories: timber logs and other products such as firewood or pulpwood. This classification is based on the significant difference in the value of the wood, as timber logs have a much higher value compared to other types of wood. The model is tailored to a real-world process, where a precise inventory of trees designated for felling is first conducted, and the trees are categorized into volumetric (diameter) classes based on the diameter of the trunk. After felling, the quantity of wood is allocated into different categories, such as logs, firewood, and pulpwood. The gross volume measured before felling and the net volume measured after felling represent the central variables of the research. Additional features, such as the type of logging and the tariff class, are also included in the analysis to improve the accuracy of the predictions. The primary goal of the thesis is the development of an accurate predictive model based on the collected harvesting data, enabling the prediction of the net volume of harvested wood ready for transport. Advanced regression models such as the multilayer perceptron regressor, linear regression, random forests, and gradient boosting regressor are used. The methodology for storing and further analyzing predictions and results using Power BI contributes to a deeper understanding and analysis of the dynamics of the wood processing industry.

Keywords:machine learning, model, regression, linear regression, random forest, gradient boosting method, neural network, forest, tree, quantity, cubature, prediction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back