izpis_h1_title_alt

Avtomatska morfometrija glave ploda iz magnetnoresonančne slike
ID Parkelj, Anja (Author), ID Špiclin, Žiga (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (6,73 MB)
MD5: DAE497438F41A347D3CBAB61034A1FFA

Abstract
V magistrskem delu je obravnavana problematika avtomatske morfometrije glave ploda na osnovi magnetnoresonančnih (MR) slik. Glavni cilj raziskave je izboljšati prenatalno diagnostiko ventrikulomegalije (VM), ki predstavlja eno izmed najpogostejših nevroloških anomalij plodov. VM se kaže kot povečani stranski možganski ventrikli s premerom 10 mm ali več in je pogosto povezana s potencialnimi nevrološkimi težavami po rojstvu. Kljub temu, da se VM pogosto diagnosticira z ultrazvočno preiskavo, so MR slike natančnejše pri zaznavanju subtilnih nepravilnosti in so zato ključnega pomena pri nadaljnjih preiskavah. Magistrska naloga obravnava uporabo naprednih metod globokega učenja, za avtomatizacijo procesa merjenja biometričnih značilnosti ploda iz MR slik. V praksi so ta merjenja izvedena ročno s strani radiologov, kar je časovno zahteven in občutljiv proces, saj je podvržen napakam, ki so posledica subjektivnosti ali slabe kakovosti slik. Z namenom izboljšanja natančnosti in zanesljivosti diagnostike je bil predlagan postopek, ki avtomatizira meritve. V prvem delu raziskave so bile analizirane metode za super-ločljivostno rekonstrukcijo 3D MR slik na osnovi 2D skladov MR slik. Ta korak je ključen, saj omogoča natančno vizualizacijo možganskih struktur in njihovo nadaljnjo obdelavo. V raziskavi smo uporabili podatkovno bazo s strani UKC Ljubljana, ki vsebuje 2D sklade MR slih zdravih primerov in primerov z različnimi stopnjami VM. Gestacijska starost plodov uporabljenih v raziskavi je od 22 do 36 tednov. Za rekonstrukcijo smo uporabili algoritem NiftyMIC. V drugem delu smo na super-ločljivostni rekonstrukciji možganov ploda uporabili algoritem, ki uporablja globoko učenje za lokalizacijo oslonilnih točk, ki so potrebne za izvajanje 11 standardnih biometričnih meritev. Algoritem je bil naučen na 81 3D rekonstruiranih MR slikah, ki smo jih pridobili po prvem koraku. V tretjem delu smo preverili sposobnost razločevanja meritev na zdrave in patološke. Kot vhod smo uporabili meritve pridobljene v drugem koraku in izračunali centile po smernicah za zdrave plode pri različnih GA. S pomočjo odločitvenih dreves smo analizirali uspešnost diagnostike med različnimi oblikami VM in zdravimi primeri. Poleg tega je algoritem sposoben ločiti VM glede na njeno resnost, pri čemer so bili ventrikli razdeljeni na tri podskupine: blago VM (10-12 mm), zmerno VM (13-15 mm) in hudo VM (nad 15 mm). Ugotovili smo, da na uspešnost rekonstrukcije 3D MR slik vplivajo natančnost zajema slik v smislu ortogonalne postavitve ploda in artefaktov v 2D slikah. Uspešno rekonstrukcijo smo dosegli na 73,63% primerih. Na rekonstruiranih 3D MR slikah, smo s predlaganim postopkom za zaznavo 22 oslonilnih točk dosegli srednjo lokalizacijsko napako 3,73±1,80 mm. Slednja napaka je malo večja kot pri podobnih raziskavah, ki so se osredotočale le na specifične anatomske točke v glavi in ne na celostno analizo. Pri določanju diagnoze z odločitvenim drevesom, smo ugotovili da je ločitev na zdrave in patološke primere uspešna, natančnost ločevanja pa se je zmanjšala, tudi na račun majhnega števila primerov, s povečanjem kompleksnosti diagnoze, tj. pri diagnostiki različnih oblik VM. Z magistrsko nalogo smo želeli pokazati prednosti uporabe metod globokega učenja na kliničnih primerih kot komplementarno orodje pri klasični diagnostiki. Pri tem smo želeli upoštevati, da kot rezultat ne vrnemo le rezultata ampak tudi informacije na podlagi katerih je bila diagnoza sprejeta, kar omogoča hiter vpogled v razvoj ploda.

Language:Slovenian
Keywords:Ventrikulomegalija, plod, magnetna resonanca, super-ločljivostna rekonstrukcija, odločitveno drevo, centili, avtomatska morfometrija
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-164323 This link opens in a new window
Publication date in RUL:22.10.2024
Views:91
Downloads:24
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automated fetal brain MRI morphometry
Abstract:
This master's thesis addresses the issue of automatic morphometry of the fetal head based on magnetic resonance (MR) images. The main objective of the research is to improve prenatal diagnosis of ventriculomegaly (VM), which is one of the most common neurological anomalies in fetuses. VM is characterized by increased lateral brain ventricles with diameter of 10 mm or more and is often associated with potential neurological problems after birth. Although VM is frequently diagnosed through ultrasound examination, MR images are more precise in detecting subtle abnormalities and are therefore essential in further assessments. The thesis focuses on the use of advanced deep learning methods to automate the process of measuring fetal biometric features from MR images. In clinical practice, these measurements are performed manually by radiologists, which is a time-consuming and sensitive process, prone to errors due to subjectivity or poor image quality. To improve diagnostic accuracy and reliability, an automated measurement process was proposed. In the first part of the research, methods for super-resolution reconstruction of 3D MR images from 2D MR stacks were analyzed. This step is crucial as it enables precise visualization of brain structures for further processing. The study used a dataset from the University Medical Centre Ljubljana, which included 2D MR image stacks of both healthy cases and cases with different degrees of VM. The gestational age of the fetuses included in the study ranged from 22 to 36 weeks. For reconstruction, the NiftyMIC algorithm was employed. In the second part, a deep learning algorithm was applied to the reconstructed 3D MR image of the fetal brain to localize the anatomical landmarks needed to acquire 11 standard biometric measurements. The algorithm was trained on 81 images obtained from the first step. In the third part, we evaluated the ability to differentiate between healthy and pathological measurements. As input, we used the measurements obtained in the second step and calculated percentiles according to guidelines for healthy fetuses at different gestational ages. Decision trees were then used to analyze the diagnostic success in distinguishing between different forms of VM and healthy cases. Additionally, the algorithm was capable of classifying VM based on its severity, dividing the ventricles into three subgroups: mild VM (10-12 mm), moderate VM (13-15 mm), and severe VM (above 15 mm). We found that the success of the 3D MR image reconstruction depends on the accuracy of the image acquisition, particularly in terms of the orthogonal positioning of the fetus and the presence of artifacts in the 2D images. Successful reconstruction was achieved in 73.63% of cases. Using the proposed method for detecting 22 anatomical landmarks on the reconstructed 3D MR images, we achieved an average localization error of 3.73 ± 1.80 mm. This result was slightly higher than in similar studies that focused on specific points rather than a comprehensive analysis. When determining the diagnosis using the decision tree, we found that the distinction between healthy and pathological cases was very high, though the accuracy decreased, owing also to limited number of cases, as the diagnosis task was made more complex by considering the VM subdiagnoses. With this thesis, we aimed to demonstrate the advantages of using deep learning methods on clinical cases as a complementary tool to classical diagnostics. Our goal was to provide not only diagnostic results but also the underlying information on which the diagnosis was based, allowing for a quicker insight into fetal development.

Keywords:Ventriculomegaly, fetus, magnetic resonance, super-resolution reconstruction, decision tree, percentiles, automatic morphometry

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back