izpis_h1_title_alt

Spremljanje fenotipskih sprememb fibroblastov z optično mikroskopijo
ID Zupančič, Matic (Author), ID Urbančič, Iztok (Mentor) More about this mentor... This link opens in a new window, ID Koklič, Tilen (Comentor)

.pdfPDF - Presentation file, Download (2,52 MB)
MD5: A2648C90031FA647A525675AC13F5BDB

Abstract
Fibroza je zapletena kronična bolezen, do katere lahko pride v številnih tkivih po njihovi poškodbi. Ključen uvodni dogodek v celjenju poškodb ali nastanku fibroze je aktivacija fibroblastov in njihova posledična diferenciacija do svoje funkcionalne oblike, miofibroblasta. Fibroza je tudi pogosta posledica izpostavljenosti nanodelcem v onesnaženem zraku. Nanodelcev po inhalaciji zdrava pljuča niso zmožna odstraniti, kar privede do kopičenja v alveolih. Ta lastnost, v kombinaciji s svojo veliko površino in visoko reaktivnostjo le-te, privede do kroničnega vnetja pljuč in aktivacije fibroblastov v njih že po enkratni izpostavitvi nanodelcem. Ti so močno heterogeni, tako v reaktivnosti njihove površine kot v velikosti in obliki, zaradi česar je potrebno v namen zagotavljanja varnosti opredeliti sposobnost proženja vnetja oziroma fibroze za posamezne nanodelce. S tem namenom smo razvili metodo z uporabo konfokalne mikroskopije, ki nam omogoča spremljanje fenotipskih sprememb živih fibroblastov in s tem zaznavo diferenciacije do miofibroblastov kot rezultat izpostavitve različnim dejavnikom. Uporabili smo celično linijo MLg kot in vitro model pljučnih fibroblastov, v katerih smo fluorescenčno označili jedro, membrane in aktin. Kot pozitivno kontrolo za aktivacijo fibroblastov smo izbrali tkivni rastni faktor beta (TGF-β1). Po določitvi ustreznih koncentracij vseh fluorescenčnih sond smo določili minimalni čas po izpostavitvi TGF-β1, pri katerem je prišlo do statistično signifikantne razlike med negativno in pozitivno kontrolo ter ustrezno podlago stekla, prevlečenega s kolagenom I, na katero smo nacepljali celice MLg. Spremljali smo številne fenotipske značilnosti celic, predvsem razlike v njih med negativno in pozitivno kontrolo, naredili izbor največkrat opaženih spremenljivk: prisotnost stresnih vlaken, vidni fokalni adhezijski kompleksi (FAK), površina celice, dvojedrnost, “izrastki” (lamele), prisotnost tankih izrastkov oziroma nitk. Izmed vseh v naboru sta se izkazali za najbolj občutljivi spremenljivki prisotnost FAK in površina celice oziroma povečanje le-te. V namen čim lažje avtomatizacije metode smo se odločili, da spremljamo le razlike v površini celice. S spremljanjem površine celice smo po dodatku TGF-β1 opazili pojav druge populacije celic z večjo površino, s čimer smo ovrednotili TGF-β1 kot primeren dodatek za pozitivno kontrolo. Nato smo izvedli triplikat bioloških ponovitev eksperimenta z negativno in pozitivno kontrolo ter nanomateriali MWCNT401, TiO2NT in »Diesel«. Dobljeni rezultati nakazujejo, da izpostavitev fibroblastov nanodelcem in vitro ni dovolj za njihovo diferenciacijo v miofibroblaste. Postavljeno metodo spremljanja fenotipskih sprememb kot posledica izpostavitvi nanodelcem bi lahko z vključitvijo predlaganih izboljšav razvili do validirane metode za napoved nastanka fibroze oziroma opredelitve toksičnosti različnih nanodelcev v pljučih. Predlagana metoda bi omogočala hitrejše in cenejše napovedovanje vpliva nanodelcev na razvoj fibroze pljuč ter hkrati zmanjšala potrebo po testnih živalih v te namene.

Language:Slovenian
Keywords:fibroblast, miofibroblast, fibroza, nanodelci, konfokalna fluorescenčna mikroskopija
Work type:Master's thesis/paper
Organization:FFA - Faculty of Pharmacy
Year:2024
PID:20.500.12556/RUL-164291 This link opens in a new window
Publication date in RUL:19.10.2024
Views:79
Downloads:145
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Monitoring the phenotypic changes of fibroblasts by optical microscopy
Abstract:
Fibrosis is a complex chronic disease that can occur in various tissues following injury. A key initial event in the healing of injuries or the development of fibrosis is the activation of fibroblasts and their subsequent differentiation into their functional form, the myofibroblast. Fibrosis is also a common consequence of exposure to nanoparticles in polluted air. After inhalation, healthy lungs are unable to remove nanoparticles, leading to their accumulation in the alveoli. This characteristic, combined with their large surface area and high reactivity, results in chronic lung inflammation and fibroblast activation even after a single exposure to nanoparticles. These particles are highly heterogeneous, both in terms of their surface reactivity and their size and shape, which necessitates the identification of the potential to induce inflammation or fibrosis for individual nanoparticles to ensure safety. To this end, we developed a method using confocal microscopy, which allows us to monitor phenotypic changes in living fibroblasts and thereby detect differentiation into myofibroblasts as a result of exposure to various factors. We used the MLg cell line as an in vitro model of lung fibroblasts, in which we fluorescently labeled the nucleus, membranes, and actin. As a positive control for fibroblast activation, we selected transforming growth factor beta TGF-β1. After determining the appropriate concentrations of all fluorescent probes, we identified the minimal time after exposure to TGF-β1 at which a statistically significant difference was observed between the negative and positive control, as well as determining a suitable collagen I-coated glass substrate onto which MLg cells were seeded. We monitored numerous phenotypic characteristics of the cells, particularly differences between the negative and positive control, and selected the most frequently observed variables: presence of stress fibers, visible focal adhesion complexes (FAK), cell area, binucleation, »projections« (lamellipodia), and presence of thin projections or filaments. Among all the variables in the set, the most sensitive indicators were found to be the presence of FAK and the cell area or its increase. In order to simplify the automation of the method, we decided to monitor only the differences in the cell surface. By monitoring cell surface area, we observed the appearance of a second population of cells with a larger surface area after addition of TGF-β1, thereby evaluating TGF-β1 as a suitable addition for a positive control. We then conducted a triplicate of biological repetitions of the experiment containing a negative and positive control, as well as the nanomaterials MWCNT401, TiO2NT and "Diesel" nanoparticles. The results obtained suggest that exposure of fibroblasts to nanoparticles in vitro is not sufficient to induce their differentiation into myofibroblasts.The established method of monitoring phenotypic changes as a result of exposure to nanoparticles could, by including the proposed improvements, be developed into a validated method for the prediction of fibrosis or the determination of the toxicity various nanoparticles in the lung. The proposed method would enable a faster and cheaper prediction of the impact of nanoparticles on the development of lung fibrosis, while reducing the need for test animals for these purposes.

Keywords:fibroblast, myofibroblast, fibrosis, nanoparticles, confocal fluorescent microscopy

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back