izpis_h1_title_alt

Reinforcement learning-based anatomical maps for pancreas subregion and duct segmentation
ID Amiri, Sepideh (Avtor), ID Vrtovec, Tomaž (Avtor), ID Mustafaev, Tamerlan (Avtor), ID Deufel, Christopher L. (Avtor), ID Thomsen, Henrik S. (Avtor), ID Hylleholt Sillesen, Martin (Avtor), ID Gudmann Steuble Brandt, Erik (Avtor), ID Andersen, Michael Brun (Avtor), ID Müller, Christoph Felix (Avtor), ID Ibragimov, Bulat (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (4,07 MB)
MD5: 38D3E968027A692C0923F9BB6010C8E4
URLURL - Izvorni URL, za dostop obiščite https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.17300 Povezava se odpre v novem oknu

Izvleček
AbstractBackground: The pancreas is a complex abdominal organ with many anatom-ical variations, and therefore automated pancreas segmentation from medicalimages is a challenging application.Purpose: In this paper, we present a framework for segmenting individualpancreatic subregions and the pancreatic duct from three-dimensional (3D)computed tomography (CT) images.Methods: A multiagent reinforcement learning (RL) network was used to detectlandmarks of the head,neck,body,and tail of the pancreas,and landmarks alongthe pancreatic duct in a selected target CT image. Using the landmark detectionresults, an atlas of pancreases was nonrigidly registered to the target image,resulting in anatomical probability maps for the pancreatic subregions and duct.The probability maps were augmented with multilabel 3D U-Net architecturesto obtain the final segmentation results.Results: To evaluate the performance of our proposed framework, we com-puted the Dice similarity coefficient (DSC) between the predicted and groundtruth manual segmentations on a database of 82 CT images with manuallysegmented pancreatic subregions and 37 CT images with manually segmentedpancreatic ducts. For the four pancreatic subregions, the mean DSC improvedfrom 0.38, 0.44, and 0.39 with standard 3D U-Net, Attention U-Net, and shiftedwindowing (Swin) U-Net architectures, to 0.51, 0.47, and 0.49, respectively, whenutilizing the proposed RL-based framework. For the pancreatic duct, the RL-based framework achieved a mean DSC of 0.70, significantly outperformingthe standard approaches and existing methods on different datasets.Conclusions: The resulting accuracy of the proposed RL-based segmentationframework demonstrates an improvement against segmentation with standardU-Net architectures.

Jezik:Angleški jezik
Ključne besede:medical image analysis, landmark detection, image segmentation, pancreas region, deep learning, reinforcement learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:Str. 7378-7392
Številčenje:Vol. 51, iss. 10
PID:20.500.12556/RUL-164044 Povezava se odpre v novem oknu
UDK:004.93:61
ISSN pri članku:2473-4209
DOI:10.1002/mp.17300 Povezava se odpre v novem oknu
COBISS.SI-ID:202626819 Povezava se odpre v novem oknu
Datum objave v RUL:16.10.2024
Število ogledov:108
Število prenosov:53
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Medical physics
Skrajšan naslov:Med. phys.
Založnik:American Institute of Physics
ISSN:2473-4209
COBISS.SI-ID:2725755 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:analiza medicinskih slik, razpoznavanje oslonilnih točk, segmentacija slik, trebušna slinavka, globoko učenje, spodbujevano učenje

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Novo Nordisk Foundation
Številka projekta:NFF20OC0062056
Naslov:Leveraging artificial intelligence for pancreatic cancer diagnosis, treatment planning and treatment outcome prediction

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0232
Naslov:Analiza biomedicinskih slik in signalov

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J2-50067
Naslov:Morfometrija medicinskih slik na podlagi globokega učenja za kardiovaskularne aplikacije

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj