izpis_h1_title_alt

Determining the filaments and their properties in cosmological simulations
ID Ilc, Samo (Author), ID Fabjan, Dunja (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (12,03 MB)
MD5: 6A2CDA81257E1935BD56536BE91BA258

Abstract
Cosmological simulations are ideal methods where the evolution of the cosmic web can be studied, allowing for easier insight into the nature of the filaments. We investigate how the intrinsic properties of filaments evolve in areas extracted from a larger cosmological simulation. We selected a subset of regions from the Dianoga simulation to study the filaments and their contents. We analyzed these regions, which were simulated with different baryon physics, namely with and without active galactic nuclei feedback. We constructed the cosmic web using the Sub-space Constrained Mean Shift algorithm and the Sequential Chain Algorithm for Resolving Filaments. We examined the basic physical properties of filaments, including their length, shape, mass, and radius, and analyzed different gas phases (hot, warm-hot intergalactic medium, and colder gas components) within these structures. The evolution of the global filament properties and the properties of the gas phases were studied in the redshift range $0 < z < 1.48$. We confirmed that the shape of the filaments correlates with their length; the longer they are, the more likely they are curved. We find that the scaling relation between the mass $M$ and length $L$ of the filaments is well described by the power law $M\propto L^{1.7}$. The radial density profile widens with redshift, meaning that the radius of the filaments counterintuitively increases over time. The gas mass fraction in the warm-hot intergalactic medium phase does not depend on the physical model and rises towards lower redshifts. However, the included baryon physics significantly impacts the metallicity of gas in filaments since active galactic nuclei feedback affects the metal content already at redshifts of $z\sim 2$. Filament properties are affected by clusters if they lie inside their splashback radius, increasing their mass, gas mass fraction, metallicity and temperature. The more massive the cluster is, the more affected the filament connected to it is.

Language:English
Keywords:Galaxies: clusters: general, Hydrodynamics, Large-scale structure of Universe, Methods: numerical, Intergalactic medium
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-163090 This link opens in a new window
COBISS.SI-ID:209952259 This link opens in a new window
Publication date in RUL:02.10.2024
Views:91
Downloads:24
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Določanje filamentov in njihovih lastnosti v kozmoloških simulacijah
Abstract:
Kozmološke simulacije predstavljajo idealno metodo za preučevanje razvoja kozmične mreže, kar omogoča lažji vpogled v naravo filamentov. Naše raziskave so se osredotočile na razvoj intrinzičnih lastnosti filamentov znotraj posamičnih območjih večje kozmološke simulacije. Za preučevanje filamentov in njihovega sestava smo iz simulacije Dianoga izbrali ožji nabor območij. Analizirali smo simulacije, ki so vključevale različne barionske fizikalne procese ter primerjali vključevanje oz. izključevanje procesa povratnega učinka aktivnih galaktičnih jeder. Kozmično mrežo smo zgradili z algoritmom podprostorskega srednjega premika in algoritmom zaporednih verig za iskanje filamentov. Preučili smo osnovne fizikalne lastnosti filamentov, vključno z njihovo dolžino, obliko, maso in polmerom, ter znotraj teh struktur analizirali različne faze plina (vroča faza, toplo-vroči medgalaktični medij in hladnejše komponente plina). Razvoj skupnih lastnosti filamentov in lastnosti različnih plinskih faz smo preučevali med rdečimi premiki $0 < z < 1{,}48$. Potrdili smo, da je ukrivljenost filamentov povezana z njihovo dolžino; daljši kot so, večja je verjetnost, da so ukrivljeni. Ugotovili smo tudi, da skalirno razmerje med maso $M$ in dolžino $L$ filamentov dobro opisuje potenčni zakon $M\propto L^{1,7}$. Radialni profil gostote se z rdečim premikom širi, kar pomeni, da se radij filamentov s časom veča. Delež mase toplo-vroče medgalaktične snovi ni odvisen od barionskega modela in narašča proti nižjim rdečim premikom. Vključena barionska fizika pa pomembno vpliva na kovinskost plina v filamentih, saj povratni učinek aktivnega galaktičnega jedra vpliva na vsebnost kovin že pri rdečih premikih $z\sim2$. Na lastnosti filamentov vplivajo jate galaksij, če ležijo znotraj njihovega povratnega radija. V tem primeru imajo filamenti povečano maso, masni delež plinskih faz, kovinskost in temperaturo. Bolj kot je jata masivna, večji vpliv ima na filament, ki je z njo povezan.

Keywords:Galaksije: jate: splošno, Hidrodinamika, Struktura na velikih skalah, Metode: numerične, Medgalaktični medij

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back