izpis_h1_title_alt

Selecting a graph database management system
ID Brezac, Nino (Author), ID Žitnik, Slavko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,93 MB)
MD5: 29DF972E1666426892F47B08DE25A634

Abstract
Graph databases have emerged as an essential tool for managing highly interconnected data, outperforming traditional relational databases in specific use cases such as recommendation engines, social networks, and fraud detection. This work first introduces the concepts of a graph database, its taxonomy and specifics. Afterwards, it provides a comprehensive evaluation of the graph databases landscape, summarizing key features of a representative sample of graph databases and constructing a decision model to help with selecting a graph database. As a means of validation, a defined use-case of analytical LPG databases from the model was chosen for evaluation. The evaluation included experimental analysis on a standardized dataset, which highlighted key differences between the systems in terms of UI, UX, speed, memory consumption, and analytics. This study provides practical insights for database administrators and developers seeking to choose the right graph database solution for their specific needs.

Language:English
Keywords:databases, graphs, graph analytics, graph algorithms, performance analysis, Cypher, Gremlin, Neo4j, Memgraph, TigerGraph
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-162724 This link opens in a new window
COBISS.SI-ID:210481667 This link opens in a new window
Publication date in RUL:26.09.2024
Views:162
Downloads:58
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Izbiranje sistema za upravljanje z grafnimi podatkovnimi bazami
Abstract:
Grafne podatkovne baze so se izkazale kot učinkovito orodje za upravljanje z zelo povezanimi podatki, saj v posebnih primerih uporabe, kot so priporočilni sistemi, družbena omrežja in odkrivanje goljufij, celo presegajo tradicionalne relacijske podatkovne baze. V tem delu so najprej predstavljeni koncepti grafnih podatkovnih baz, njihova taksonomija in posebnosti. Nato sledi celostna predstava področja grafnih podatkovnih baz, kjer so povzete ključne lastnosti reprezentativnega vzorca grafnih podatkovnih baz in je posledično zgrajen model odločitvenega drevesa za pomoč pri izbiri grafne podatkovne zbirke. Za validacijo je izbran primer uporabe analitičnih podatkovnih zbirk LPG. Validacija je vsebovala eksperimentalno analizo na standardiziranem naboru podatkov, ter je izpostavila ključne razlike med sistemi glede uporabniškega vmesnika, uporabniške izkušnje, hitrosti, porabe pomnilnika in analitičnih zmožnosti. Ta študija ponuja praktičen vpogled za skrbnike podatkovnih baz in razvijalce, ki želijo izbrati pravo rešitev grafne podatkovne zbirke za svoje specifične potrebe.

Keywords:podatkovne baze, grafi, grafna analitika, grafni algoritmi, performančna analiza, Cypher, Gremlin, Neo4j, Memgraph, TigerGraph

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back