izpis_h1_title_alt

Determinante glavne frekvence alfa v mirovnem elektroencefalogramu starostnikov : magistrsko delo
ID Pavlovčič, Tisa (Author), ID Slana Ozimič, Anka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,39 MB)
MD5: E7FE87E3DC35CE5F5BE6E919BAF30E4E

Abstract
Spreminjanje možganskih valovanj je običajen proces povezan s staranjem, ki se odraža tudi v spremembah EEG signala. V zadnjem času, ob naraščajoči problematiki demence in z demenco povezanim kognitivnim upadom, se vse več raziskuje, kako se možganska valovanja spreminjajo ob patološkem staranju ter, ali obstajajo biomarkerji, ki bi lahko bili v pomoč pri zgodnjem odkrivanju demence ali kognitivnega upada. EEG biomarker, imenovan glavna alfa frekvenca (angl. peak alpha frequency, PAF), se kaže kot robusten korelat kognitivnih sposobnosti, vendar pa se v literaturi kažejo tudi morebitni vplivi drugih dejavnikov, kot so starost, spol, leta izobrazbe in obseg glave. Vplivi teh dejavnikov so bili v preteklosti že raziskani, vendar v omejenem obsegu. V trenutno raziskavo smo zato vključili velik vzorec starejših oseb (N = 448) z različnimi kognitivnimi sposobnostmi in iz različnih delov Slovenije, s čimer smo si prizadevali zagotoviti čim bolj reprezentativen in raznolik vzorec. Preverili smo, katera izmed raziskovanih spremenljivk (kognitivni status, starost, spol, leta izobrazbe in obseg glave) najbolje napoveduje PAF. Zajeli smo 8-minutni mirovni EEG in na odsekih z zaprtimi očmi s pomočjo avtomatskega algoritma FOOOF določili vrednost PAF. Kognitivni status smo ocenili glede na rezultate štirih pogosto uporabljenih psihometričnih testov za oceno kognitivnih sposobnostni pri starejših: MoCA, ADAS-cog, Eurotest in Phototest. Rezultati so pokazali, da kljub pomembnemu vplivu starosti na PAF, kognitivni status najmočneje napoveduje PAF. Spol, leta izobrazbe in obseg glave se niso izkazali kot pomembni dejavniki pri določanju PAF. Biomarker PAF se tako, ob upoštevanju starosti, izkaže kot koristen za elektrofiziološko oceno kognitivnega statusa pri starejših, pri čemer praktično vrednost PAF za pomoč pri zgodnjem odkrivanju demence in kognitivnega upada vidimo predvsem v kombinaciji s še drugimi biomarkerji.

Language:Slovenian
Keywords:biomarkerji, demenca, elektroencefalografija, kognitivne sposobnosti, glavna alfa frekvenca, kognitivna znanost
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Place of publishing:Ljubljana
Publisher:T. Pavlovčič
Year:2024
Number of pages:60 str.
PID:20.500.12556/RUL-162515 This link opens in a new window
UDC:165.194(043.2)
COBISS.SI-ID:208989443 This link opens in a new window
Publication date in RUL:24.09.2024
Views:112
Downloads:19
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Determinants of Peak Alpha Frequency in Resting State Electroencephalogram of Elderly Subjects
Abstract:
The aging process is accompanied by changes in brain wave patterns identified also through EEG signal alterations. Recently, with the increasing burden of dementia and dementia-related cognitive decline, more research has been conducted to understand how brain waves change with pathological aging and whether there are biomarkers that could help with early detection of dementia or cognitive decline. The EEG biomarker, peak alpha frequency (PAF), is shown to be a robust correlate of cognitive abilities. However, literature also shows potential influences of other factors such as age, gender, years of education, and head size. The effects of these factors have been studied in the past but to a limited extent. In the current study, we included a large sample of older individuals (N = 448) with different cognitive abilities from different parts of Slovenia, with the aim of providing a more representative sample. We examined which of the investigated variables (cognitive status, age, sex, years of education, head size) best predicts PAF. We captured 8-minute resting-state EEG data, and determined PAF values using an automated FOOOF algorithm on segments with closed eyes. Cognitive status was assessed based on the results of four widely used psychometric tests for evaluating cognitive abilities in older adults: MoCA, ADAS-cog, Eurotest, and Phototest. Our results highlight that despite the significant influence of age on PAF, cognitive status emerges as the most robust predictor of PAF. Factors sex, years of education, and head size did not prove to be crucial in determining PAF. Therefore, the PAF biomarker, when considered age alongside, demonstrates its utility in providing a broad assessment of cognitive status in older adults. We emphasize the practical value of PAF, particularly in combination with other (EEG) biomarkers, for the early detection of dementia

Keywords:biomarkers, dementia, electroencephalography, cognitive function, peak alpha frequency

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back