izpis_h1_title_alt

Netranzitivne kocke : delo diplomskega seminarja
ID Kumer, Nejc (Author), ID Bernik, Janez (Mentor) More about this mentor... This link opens in a new window, ID Šega, Gregor (Comentor)

.pdfPDF - Presentation file, Download (347,57 KB)
MD5: 832CA63EBC33EDED350E42056B542FE4

Abstract
Koncept tranzitivnosti pogosto dojemamo kot nekaj naravnega, saj se ponavadi z njim srečujemo v praksi. V verjetnosti pa ta lastnost pogosto ne drži. Prav s tem problemom se bomo ukvarjali v delu. Cilj uvodnega dela naloge je bralcu predstaviti in podrobneje opisati osnovni problem ter ga dodatneje podkrepiti s primeri. V nadaljevanju naloge, ko je bralec že seznanjen s paradoksom netranzitivnih kock, pa se posvetimo poglobljeni analizi nekaterih matematičnih dejstev v zvezi z netranzitivnimi kockami. Pobližje si pogledamo osnovno množico treh netranzitivnih kock, nato pa še komplet štirih kock, med katere spadajo tudi Efronove kocke. Tako kot število kock v množici, v nadaljevanju večamo tudi število ploskev posamezne kocke. Z matematičnega vidika najbolj kompleksen del diplomske naloge pa predstavljajo izreki, ki so neposredno povezani z verjetnostmi zmag kock proti ostalim v množici. Te verjetnosti natančneje omejimo pod različnimi pogoji, našteta dejstva pa prav tako podkrepimo z matematičnimi dokazi. Pomembna ugotovitev v povezavi z omejitvijo verjetnosti pri netranzitivnih kockah je prav gotovo neposredna povezanost rezultatov z razmerjem, ki ga v matematiki imenujemo zlati rez.

Language:Slovenian
Keywords:netranzitivnost, množica netranzitivnih kock, verjetnost
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-162351 This link opens in a new window
UDC:519.2
COBISS.SI-ID:208528643 This link opens in a new window
Publication date in RUL:21.09.2024
Views:91
Downloads:9
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Intransitive dice
Abstract:
The concept of transitivity is often perceived as something natural, as we encounter it in everydays life. In probability, however, this is often not true. We will deal with this problem in the thesis. The aim of the introductory part of the assignment is, first of all, to present and describe the basic problem to the reader and to further support it with examples. In the continuation of the thesis, when the reader is already familiar with the paradox of intransitive dice, we devote ourselves to an in-depth analysis of some mathematical facts related to intransitive dice. We take a closer look at the basic set of three intransitive dice and also expand the dimensions to a set of four dice, which also includes Efron’s dice. Similar to the number of dice in the set, we also increase the number of sides of each dice. From a mathematical point of view, the most complex part of the thesis is represented by theorems that are directly related to the probability of the dice winning against the others in the set. We limit these probabilities more precisely under various conditions and we also support the listed facts with mathematical proofs. An important finding, in connection with the limitation of probabilities between intransitive dice, is certainly the direct connection of the results with the ratio, which is well known among mathematicians and is also called the golden ratio.

Keywords:intransitivity, set of intransitive dice, probability

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back