izpis_h1_title_alt

OCENA PROŽNOSTI ODJEMA IN ODZIVOV ODJEMALCEV V PROGRAMIH VODENJA PORABE ELEKTRIČNE ENERGIJE Z METODAMI STROJNEGA UČENJA
ID GRABNER, MIHA (Author), ID Blažič, Boštjan (Mentor) More about this mentor... This link opens in a new window, ID Štruc, Vitomir (Comentor)

.pdfPDF - Presentation file, Download (3,18 MB)
MD5: 1DF09A8A0005BA3578666E2447A14FF0

Abstract
Podnebne spremembe so glavni vzrok za energetski prehod, ki bo močno vplival na spremembo elektroenergetskega sistema. Preoblikovanje elektroenergetskega sistema v bolj trajnostnega in prijaznega okolju lahko dosežemo z elektrifikacijo prometa in toplote skupaj z integracijo novih obnovljivih virov energije. Preoblikovanje elektroenergetske industrije pa ni mogoče brez digitalizacije, ki energetskim podjetjem prinaša nove izzive, kot je obvladovanje vele podatkov iz pametnih števcev. Zaradi vključevanja novih obnovljivih virov in bremen v distribucijsko omrežje se posledično povečuje variabilnost pretokov moči, kar otežuje vodenje sistema. Za obvladovanje takih razmer in v izogib velikim investicijam v elektroenergetsko infrastrukturo je nujna uporaba razpoložljive prožnosti. Za ustrezno izkoriščenost prožnosti v omrežju so nujno potrebni skalabilni in učinkoviti pristopi strojnega učenja, ki temeljijo na vele podatkih iz pametnih števcev. Vodenje izredno dinamičnega sistema in uporaba prožnosti pa zahtevata tudi napovedovanje obratovalnih razmer. V disertaciji predstavimo tri pomembne izvirne znanstvene prispevke na področju programov vodenja porabe: (i) Novi pristop za napovedovanje odjema v distribucijskem omrežju, ki temelji na globalnem modeliranju. V disertaciji je predlagan pristop za napovedovanje odjema v distribucijskih omrežjih, temelječ na enem samem globalnem modelu, ki se uporablja za izdelavo napovedi velikega števila obremenitev. Predlagani pristop je skalabilen in uporablja medsebojne informacije časovnih vrst. S predlaganim pristopom se lahko izdelajo napovedi, tudi če manjka del zgodovinskih podatkov ali če se obnašanje posameznega bremena s časom spremeni. (ii) Globalni model za izračun osnovne obremenitve, ki temelji na dvosmernem modeliranju časovnih vrst. Izvirni znanstveni prispevek predstavlja globalni model za izračun osnovne obremenitve, pri čemer dodatno razvijemo še tri referenčne modele za primerjavo. Največja prednost predlaganega modela je njegova sposobnost upoštevanja preteklih in prihodnjih zaporedij za napovedovanje osnovne obremenitve. (iii) Novi pristop za napovedovanje prožnosti odjema toplotnih črpalk. Izvirni znanstveni prispevek predstavlja pristop za napovedovanje prožnosti odjema toplotnih črpalk, pri katerem napovedujemo seštevek odjema posameznih toplotnih črpalk. Predlagani pristop je nadgradnja obstoječih pristopov, ki temeljijo na uporabi visokofrekvenčnih podatkov in se osredotočajo predvsem na odjem posameznih odjemalcev.

Language:Slovenian
Keywords:pametna omrežja, prožnost, prilagajanje odjema, napovedovanje, globoko učenje
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2024
PID:20.500.12556/RUL-162176 This link opens in a new window
Publication date in RUL:19.09.2024
Views:198
Downloads:109
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:ASSESSMENT OF DEMAND FLEXIBILITY AND RESPONSE OF CONSUMERS IN ELECTRICITY DEMAND-RESPONSE PROGRAMMES USING MACHINE LEARNING METHODS
Abstract:
Power systems are currently experiencing a significant transformation as a result of the energy transition, which is driven by climate change. The electrification of transportation and heat together with renewables is reshaping the electricity energy industry towards a more sustainable and environmentally friendly. There is a pressing need to restructure the power system, allowing for greater flexibility. With digitalization, energy companies also have to handle big data, especially from smart meters. Therefore, to properly integrate flexibility into the grid, scalable, and efficient machine learning techniques that can utilize big data from smart meters are critically needed. With the integration of new smart-grid technologies, such as demand-response and distributed energy resources, load forecasting using machine learning is becoming increasingly important at various levels of distribution networks. Here, accurate forecasts are often needed as input for many applications including grid management, storage optimization, peer-to-peer trading, demand-response, and related tasks. In this thesis, we present three key contributions, that can be utilized in the scope of demand response programmes: (i) First, we propose a global modeling framework for load forecasting in distribution networks that, unlike its local competitors, relies on a single global model to generate forecasts for a large number of loads. The global nature of the framework, significantly reduces the computational burden typically required when training multiple local forecasting models, efficiently exploits the cross-series information shared among different loads, and facilitates forecasts even when historical data for a load is missing or the behavior of a load evolves over time. To further improve the performance of the proposed framework, an unsupervised localization mechanism is proposed. (ii) Our second contribution explores whether the previously proposed global modeling approach can improve the performance over commonly used baseline load estimation models that are all based on local modeling. We propose a global baseline load estimation model that utilizes bi-directional sequence modeling. The biggest advantage of the proposed model is its ability to optimally learn the importance of past and future sequences around demand response events to predict the baseline. (iii) In the third contribution we focus on forecasting the maximal demand flexibility of heat pumps, which is highly related to the Non-Intrusive Load Monitoring task, where the task is to estimate the output signal based on the input signal. However, existing approaches have proven impractical as they depend on high-frequency data and solely target the combined load of individual consumers. As a solution, we introduce a comprehensive framework for forecasting demand flexibility, that can seamlessly integrate with existing smart meter infrastructure.

Keywords:smart grids, flexibility, demand response, forecasting, deep learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back