izpis_h1_title_alt

Širjenje okužbe v grafu : delo diplomskega seminarja
ID Bizjak, Luka (Author), ID Dolžan, David (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (939,73 KB)
MD5: 71D9ECE40E773BF3DEF88339177380C9

Abstract
Matematično modeliranje širjenja nalezljivih bolezni je ključno za razumevanje dinamike širjenja okužb v omrežjih. Nedavni izbruhi bolezni, kot so COVID-19, SARS in MERS, izpostavili potrebo po natančnih matematičnih modelih za napovedovanje širjenja bolezni. Teorija grafov omogoča simulacijo različnih scenarijev prenosa okužb med posamezniki v socialnih omrežjih. Poudarek je na polnih in zvezdastih grafih, ter njihovem kompozitumu. Vpeljana je uporaba markovskih verig, ki omogoča analizo tako enokoračnih kot večkoračnih verjetnosti širjenja okužbe. Za modeliranje smo sprva uporabili predpostavko, da osebe ne morejo okrevati po okužbi, in s tem poenostavili računanje. Sestavljena je krajša simulacija, ki pogleda možnost okrevanja brez in s podeljeno podeljeno imunostjo. Diplomsko delo prispeva k razumevanju, kako omrežna struktura vpliva na širjenje nalezljivih bolezni in kako oblikovati učinkovite strategije za zajezitev pandemij.

Language:Slovenian
Keywords:teorija grafov, polni graf, zvezdasti graf, markovska veriga
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-162010 This link opens in a new window
UDC:519.17
COBISS.SI-ID:208326659 This link opens in a new window
Publication date in RUL:18.09.2024
Views:134
Downloads:27
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Spread of infection in a graph
Abstract:
Mathematical modeling of infectious disease spread is crucial for understanding the dynamics of infection transmission in networks. Recent outbreaks of diseases such as COVID-19, SARS, and MERS have highlighted the need for precise mathematical models to predict the spread of diseases. Graph theory allows the simulation of various scenarios for infection transmission between individuals in social networks. The focus is on complete and star graphs, as well as their composites. The use of Markov chains is introduced, enabling the analysis of both single-step and multi-step probabilities of infection spread. Initially, the assumption that individuals cannot recover from the infection was used to simplify the calculations. A brief simulation was conducted to explore the possibility of recovery, both without and with immunity. This thesis contributes to the understanding of how network structures affect the spread of infectious diseases and how to design effective strategies for pandemic containment.

Keywords:graph theory, complete graph, star graph, Markov chain

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back