izpis_h1_title_alt

Vrednotenje šahovskih pozicij s strojnim učenjem : delo diplomskega seminarja
ID Debevc, Luka (Author), ID Todorovski, Ljupčo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,42 MB)
MD5: 982E3B1F73F92E53D175EDF9F7A13E51

Abstract
V delu predstavimo vrednotenje šahovskih pozicij. Obravnavamo matematično ozadje vrednotenja in načine, kako se s problemom soočimo v praksi. Pristope k vrednotenju lahko razvrstimo v dve skupini: statično vrednotenje in preiskovanje. Pri statičnem vrednotenju se sprva osredotočimo na preprost primer ocene na podlagi vrednosti figur, ob koncu dela pa predstavimo učinkovito posodobljive nevronske mreže. Pri preiskovanju se omejimo na algoritme, ki temeljijo na principu minimax. V obeh delih se pojavljajo parametri, katerih vrednosti lahko optimiziramo z različnimi tehnikami strojnega učenja. V delu zajamemo logistično regresijo, gradientni spust in stohastično aproksimacijo s sočasnimi motnjami.

Language:Slovenian
Keywords:šah, strojno učenje, algoritem minimax, vrednotenje šahovskih pozicij, nevronske mreže, logistična regresija
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161884 This link opens in a new window
UDC:004.8
COBISS.SI-ID:208204803 This link opens in a new window
Publication date in RUL:15.09.2024
Views:134
Downloads:21
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Evaluation of chess positions using machine learning
Abstract:
In this seminar, we present the evaluation of chess positions. We discuss the mathematical background of evaluation and the methods used to address this problem in practice. The evaluation methods can be clustered in two groups of static evaluation and search. In static evaluation, we initially focus on a simple example of assessment based on the value of the pieces, and by the end, we introduce efficiently updatable neural networks. In the search part, we limit ourselves to algorithms based on the minimax principle. In both parts, there are parameters whose values can be optimized using various machine learning techniques. We cover logistic regression, gradient descent and simultaneous perturbation stochastic approximation.

Keywords:chess, machine learning, algorithm minimax, evaluation of chess positions, neural networks, logistic regression

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back