izpis_h1_title_alt

Tlakovanje trikotnika s polinominami : delo diplomskega seminarja
ID Hrovat, Dominik (Author), ID Vavpetič, Aleš (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (503,18 KB)
MD5: 1A07FA5DF7294AB96364EB18D46CF3FD

Abstract
Problem tlakovanja je geometrijski problem pri katerem želimo določen lik pokriti z vnaprej podanimi ploščicami. Ker so tovrstni problemi v splošnem težki, smo definirali označena pokritja, ki nam podajajo potreben pogoj za obstoj tlakovanja. V diplomskem delu smo opisali, kako preidemo iz geometrijskega na algebraičen problem. Našli smo izomorfizem, ki slika ploščice v polinome in dokazali, da je problem iskanja označenega pokritja ekvivalententen problemu vsebovanosti polinoma v idealu. Dokazali smo, da je polinom vsebovan v idealu natanko takrat, ko se reducira v 0 po modulu Gröbnerjeve baze. Za iskanje Gröbnerjeve baze ideala, smo uporabili Buchbergerjev algoritem. Na koncu smo na trikotnem mrežastem območju uporabili izpeljano teorijo in dokazali izrek Conwaya in Lagariasa.

Language:Slovenian
Keywords:celica, polinomina, polinom, ploščica, tlakovanje, označeno pokritje, mrežasto območje, kolobar, redukcija, ideal, sizigija, nasičenost, Gröbnerjeva baza, Buchbergerjev algoritem
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2024
PID:20.500.12556/RUL-161810 This link opens in a new window
UDC:519.1
COBISS.SI-ID:207925251 This link opens in a new window
Publication date in RUL:14.09.2024
Views:188
Downloads:28
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Signed polyomino tilings of a triangular area
Abstract:
Tiling problem is a geometric problem in which we aim to cover a certain figure with pre-defined tiles. Since such problems are generally challenging, we have defined signed tilings, which give us a necessary condition for the existence of a tiling. In the thesis, we described how we transition from a geometric problem to an algebraic one. We found an isomorphism that maps tiles to polynomials and proved that the problem of finding a signed tiling is equivalent to the problem of polynomial containment in an ideal. We proved that a polynomial is contained in an ideal exactly when it reduces to 0 with respect to the Gröbner basis. To find the Gröbner basis of the ideal, we used Buchberger's algorithm. Finally, on a triangular lattice region, we applied the derived theory and proved Conway's and Lagarias's theorem.

Keywords:cell, polyomino, polynomial, tile, tiling, signed tiling, lattice, ring, reduction, ideal, syzygy, saturation, Gröbner basis, Buchberger algorithm

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back