izpis_h1_title_alt

Zaznava napak z uporabo avtokodirnika pri obdelavi slike
ID Lekše, Vid (Author), ID Bračun, Drago (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (11,53 MB)
MD5: BA585930E2183CF3AF25FEB7D4366D96

Abstract
Zagotavljanje kakovosti je ključen proces v sodobni proizvodnji, pri čemer ima detekcija napak pomembno vlogo. Ena izmed učinkovitih metod za zaznavanje napak je uporaba globokih modelov, ki analizirajo značilnosti izdelkov na podlagi velikega števila slik. Zaradi redkega pojavljanja napak se pojavi problem pomanjkanja primerov slabih izdelkov. Za rešitev te težave smo uporabili globok model, ki se uči zgolj na slikah dobrih izdelkov, kjer je na voljo obsežna podatkovna množica. Razvili smo avtokodirnik, ki je bil učen na slikah dobrih izdelkov, in nato analizirali ter testirali uspešnost tega modela pri zaznavanju napak na podlagi slik.

Language:Slovenian
Keywords:strojno učenje, globoki modeli, zagotavljanje kakovosti, konvolucijske nevronske mreže, avtokodirnik, zaznava napak, obdelava slike
Work type:Master's thesis/paper
Organization:FS - Faculty of Mechanical Engineering
Year:2024
PID:20.500.12556/RUL-161773 This link opens in a new window
Publication date in RUL:14.09.2024
Views:179
Downloads:52
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Defect detection using an autoencoder in image processing
Abstract:
Quality assurance is a crucial process in modern manufacturing, with defect detection playing an important role. One effective method for defect detection is the use of deep learning models that analyze product characteristics based on a large number of images. Due to the rarity of defects, there is a problem of insufficient examples of defective products. To address this issue, we employed a deep learning model trained exclusively on images of good products, for which a large dataset is available. We developed an autoencoder that was trained on images of good products, and then analyzed and tested the performance of this model in detecting defects based on images.

Keywords:machine learning, deep models, quality assurance, convolutional neural networks, autoencoder, defect detection, image processing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back