izpis_h1_title_alt

Determinante v kombinatoriki
ID Šuković, Sonja (Author), ID Konvalinka, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (427,63 KB)
MD5: B408D4A2CA2F304AF443A76EA536A9C6

Abstract
Veliko matematičnih problemov rešujemo s prevedbo na druge, bolj znane in raziskane probleme. V ta namen pogosto uporabljamo matrike, s katerimi lahko na kompakten način zapišemo lastnosti nekaterih objektov. Ta pristop včasih na bolj ali manj presenetljive načine vodi do determinantnih formul. V tej diplomski nalogi so prikazani nekateri primeri uporabe determinant in determinantnih formul v kombinatoriki. Poudarek je na formulaciji in dokazu Lindström-Gessel-Viennotove leme. Prikazana je tudi njena uporaba, predvsem pri dokazu Binet-Cauchyjevega izreka ter Jacobi-Trudijeve identitete. Cilj je bralcu predstaviti zanimive probleme, v katerih prevedba na teorijo grafov pripelje do elegantne rešitve.

Language:Slovenian
Keywords:kombinatorika, determinante, grafi, Lindström-Gessel-Viennotova lema, simetrični polinomi
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161753 This link opens in a new window
COBISS.SI-ID:213385219 This link opens in a new window
Publication date in RUL:13.09.2024
Views:155
Downloads:31
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Determinants in combinatorics
Abstract:
Many mathematical problems are solved by translating them into other, better-known and studied problems. For this purpose, matrices are often used to compactly express the properties of certain objects. This approach sometimes, in more or less surprising ways, leads to determinantal formulas. This thesis presents several examples of the use of determinants and determinantal formulas in combinatorics. The focus is on the formulation and proof of the Lindström-Gessel-Viennot lemma. Its application is also demonstrated, particularly in the proof of the Binet-Cauchy theorem and the Jacobi-Trudi identity. The aim is to present the reader with interesting cases where a translation to graph theory leads to an elegant solution.

Keywords:combinatorics, determinants, graphs, Lindström-Gessel-Viennot lemma, symmetric polynomials

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back