izpis_h1_title_alt

Uporaba samokodirnikov pri klasifikaciji na osnovi šumnih podatkov
ID Godnič, Luka (Avtor), ID Vračar, Petar (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (574,97 KB)
MD5: D20A3BD3031425951EC8750E4FDDAA5B

Izvleček
Pri nadzorovanem učenju se pogosto soočamo z nepopolnimi ali šumnimi podatki, kar predstavlja velik izziv za napovedne modele, saj lahko šum močno zmanjša njihovo uspešnost. V diplomski nalogi smo raziskovali pristop k modeliranju šumnih podatkov, ki temelji na posebni arhitekturi nevronske mreže, imenovani samokodirnik, prilagojeni za klasifikacijske naloge. Podrobno smo opisali postopek konstrukcije in učenja tega modela. V eksperimentalni evalvaciji smo preizkusili zmogljivost prilagojenega samokodirnika na problemu napovedovanja koronarne srčne bolezni. Podatkom smo dodajali šum različnih vrst in jakosti ter primerjali uspešnost tega modela s standardno večnivojsko nevronsko mrežo. Ugotovitve so pokazale, da se je samokodirnik v večini primerov izkazal za uspešnejši model.

Jezik:Slovenski jezik
Ključne besede:samokodirnik, klasifikacija, modeliranje šumnih podatkov, nevronske mreže
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2024
PID:20.500.12556/RUL-161609 Povezava se odpre v novem oknu
COBISS.SI-ID:212903427 Povezava se odpre v novem oknu
Datum objave v RUL:12.09.2024
Število ogledov:164
Število prenosov:19
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Utilizing Autoencoders in Classification with Noisy Data
Izvleček:
In supervised learning, we often face incomplete or noisy data, which presents a significant challenge for predictive models, as noise can greatly reduce their performance. In this thesis, we explored an approach to modelling noisy data based on a specific neural network architecture, known as an autoencoder, adapted for classification tasks. We provided a detailed description of the construction and training process of this model. In the experimental evaluation, we tested the performance of the adapted autoencoder on the problem of predicting coronary heart disease. We added noise of different types and intensities to the data and compared the performance of this model with a standard multilayer neural network. The findings showed that, in most cases, the autoencoder proved to be a more successful model.

Ključne besede:autoencoder, classification, noisy data modeling, neural networks

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj