izpis_h1_title_alt

Uporaba samokodirnikov pri klasifikaciji na osnovi šumnih podatkov
ID Godnič, Luka (Author), ID Vračar, Petar (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (574,97 KB)
MD5: D20A3BD3031425951EC8750E4FDDAA5B

Abstract
Pri nadzorovanem učenju se pogosto soočamo z nepopolnimi ali šumnimi podatki, kar predstavlja velik izziv za napovedne modele, saj lahko šum močno zmanjša njihovo uspešnost. V diplomski nalogi smo raziskovali pristop k modeliranju šumnih podatkov, ki temelji na posebni arhitekturi nevronske mreže, imenovani samokodirnik, prilagojeni za klasifikacijske naloge. Podrobno smo opisali postopek konstrukcije in učenja tega modela. V eksperimentalni evalvaciji smo preizkusili zmogljivost prilagojenega samokodirnika na problemu napovedovanja koronarne srčne bolezni. Podatkom smo dodajali šum različnih vrst in jakosti ter primerjali uspešnost tega modela s standardno večnivojsko nevronsko mrežo. Ugotovitve so pokazale, da se je samokodirnik v večini primerov izkazal za uspešnejši model.

Language:Slovenian
Keywords:samokodirnik, klasifikacija, modeliranje šumnih podatkov, nevronske mreže
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2024
PID:20.500.12556/RUL-161609 This link opens in a new window
COBISS.SI-ID:212903427 This link opens in a new window
Publication date in RUL:12.09.2024
Views:162
Downloads:19
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Utilizing Autoencoders in Classification with Noisy Data
Abstract:
In supervised learning, we often face incomplete or noisy data, which presents a significant challenge for predictive models, as noise can greatly reduce their performance. In this thesis, we explored an approach to modelling noisy data based on a specific neural network architecture, known as an autoencoder, adapted for classification tasks. We provided a detailed description of the construction and training process of this model. In the experimental evaluation, we tested the performance of the adapted autoencoder on the problem of predicting coronary heart disease. We added noise of different types and intensities to the data and compared the performance of this model with a standard multilayer neural network. The findings showed that, in most cases, the autoencoder proved to be a more successful model.

Keywords:autoencoder, classification, noisy data modeling, neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back